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Introduction 

  Consider a system of fermions in Fock space described by the Hamiltonian  
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where                 are single-particle states with energies     and         are  
two-body interaction matrix elements.    
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The dimensionality of the many-particle model space increases combinatorially 
with the number of single-particle orbitals and/or the number of fermions, and 
conventional diagonalization methods become intractable. 

Examples: configuration-interaction (CI) shell model for nuclei and cold 
atoms in a trap. 

•   The auxiliary-field Monte Carlo (AFMC) method for the shell model enables  
 calculations in model spaces that are many orders of magnitude larger than 
 those that can be treated by diagonalization methods.  



Hubbard-Stratonovich (HS) transformation 

A general effective Hamiltonian in Fock space with a one-body part and a 
two-body interaction can be written as : 
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↵(⌧)d⌧                                           is a Gaussian weight and         is a one-body 
propagator of non-interacting fermions in time-dependent auxiliary fields  
 

The HS transformation describes the Gibbs ensemble          at inverse 
temperature            as a path integral over time-dependent auxiliary fields 
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Thermal expectation values of observables 
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Grand canonical quantities in the integrands can be expressed in terms 
 of the single-particle representation matrix       of the propagator : 
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•   The integrand reduces to matrix algebra in the single-particle space  (of  
typical dimension ~100). 



Auxiliary-field Monte Carlo (AFMC) and the sign problem 

The path integrals are done by Monte Carlo methods, sampling the fields  
according to a weight 

is the Monte Carlo “sign” function. 

For a generic interaction, the sign can be negative (or a phase) for some of 
the field configurations.  When the average sign is small, the fluctuations in   
observables become very large        the Monte Carlo sign problem. )

		Wσ =Gσ |TrUσ |

		Φσ =TrUσ /|TrUσ |

G.H. Lang, C.W. Johnson, S.E. Koonin, W.E. Ormand, PRC  48, 1518 (1993);  
Y. Alhassid, D.J. Dean, S.E. Koonin, G.H. Lang, W.E. Ormand, PRL 72, 613 (1994). 

Also known in nuclear physics as the shell model Monte Carlo (SMMC) 
 method.  
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where       is the time-reversed density. 

When the Hamiltonian is time-reversal invariant, we can rewrite 

Sign rule: when all              and the single-particle angular momentum is 
half an integer,                   for any configuration     of and the interaction is 
known as a good-sign interaction (in the grand canonical ensemble). 
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Sign rule and good-sign interactions 

is time-reversal invariant                             is also invariant under time reversal.     

If     is an eigenvalue of       then        is also an eigenvalue. 
 If the total single-particle angular momentum is half an integer (e.g., j in 
nuclei), the eigenvalues appear in pairs              (Kramer’s degeneracy in the 
complex plane) and 

	λi Uσ 		λi
*

     good-sign interaction ⇒



 The dominant collective 
 components of effective 
 nuclear interactions in the 
CI shell model have a 
 good sign.  

(ii) To circumvent the sign problem for the complete interaction, a family of 
 good-sign interactions is constructed by multiplying the bad-sign  
components            by a negative parameter g  (making             ): 

A practical method for circumventing the sign problem 
in the nuclear configuration-interaction shell model 

      

H = HG + gHB

Observables are calculated with accurately for            and extrapolated to  

Alhassid, Dean, Koonin, Lang, Ormand, PRL 72, 613 (1994). 
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(i) In the calculation of statistical and collective properties of nuclei, we have 
used successfully good-sign interactions (pairing + multipole-multipole terms)  



Example: thermal observables in 54Fe 
using an effective nuclear interaction in  
the pf shell, extrapolated from g <0 to g=1: 

g=0 is not a singular point and simple linear 
or quadratic extrapolations are sufficient: find  
the lowest order polynomial such that      per 
 dof < 1. 

	χ
2

Energy <H>, total strengths of quadrupole Q, 
Gamow-Teller, and M1 operators 

The extrapolation method was validated in  
nuclei for which conventional diagonalization 
is possible. 



Particle-number projection 
In a finite-size system, it is necessary to project on the canonical ensemble 
 of fixed particle number     . In the Fock space spanned by      single-particle  
orbitals, this can be done by an exact discrete Fourier transform. 
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Canonical partition (for      particles):  

Canonical expectation of an observable O: 

The    -projected partition is used in the Monte Carlo weight function 
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For a good-sign interaction, the projection on an even number of particles  
keeps the sign good but the odd-particle projection leads to a new sign  
problem. 



 Applications of AFMC to odd-even and odd-odd nuclei has been hampered by  
a sign problem that originates from the projection on odd number of particles. 

†( ) ( ) (0)m m mG T a aν ν ντ τ=Σ n l jν =

  Gν (τ )~ e−[ E j ( A±1)− Egs ( A)] |τ |

Circumventing the odd-particle sign problem in AFMC 
Mukherjee and Alhassid, PRL 109, 032503 (2012) 

•   We introduced a method to calculate the ground-state energy of the  
odd-particle system that circumvents this sign problem. 

•  The energy difference between the 
lowest energy of the odd-particle 
system for a given spin j and the 
ground-state energy of the even-
particle system can be extracted from 
the slope of              .  ln ( )Gν τ

( 1)jE A±

Consider the imaginary-time single-particle Green’s functions for even-even 
 nuclei:                                           for orbitals  

  Minimize                 to find the ground-
state energy and its spin j. 

In the asymptotic regime in   (1 < ⌧ ⌧ �)

		57Fe



Statistical errors of ground-state energy of           
direct SMMC versus Green’s function method 

Pairing gaps in mid-mass nuclei from odd-even mass differences 

direct SMMC 
Direct AFMC 

Green’s function method 

•  AFMC in the complete fpg9/2 shell (in good agreement with experiments) 

Direct AFMC 

Green’s function method 



Application: statistical properties of nuclei 
Statistical properties, and, in particular, level densities, are important input in 
the theory of statistical nuclear reactions, but are not always accessible to 
direct measurements. 

AFMC is the state-of-the-art method for the microscopic calculation of 
statistical properties of nuclei. 

Bonett-Matiz, Mukherjee, 
Alhassid, PRC  88, 011302 R (2013) 

Excellent agreement 
with experiments: 
(i) level counting, 
(ii) proton evaporation 
Spectra, 
(iii) neutron resonance 
data 

Example: level densities in nickel isotopes 



Projection on good quantum numbers and “sign” problems 

The traces in thermal expectation values sum over all values of the good  
quantum numbers (e.g., spin, parity, …).  

           for J=0 and              can be calculate accurately at large     .   

However,          for         has large 
fluctuations at large     and it is difficult 
to extract the excitation energy of the 
lowest level with spin    .  

		TrJ Uσ >0 		E J=0(β) β

β

To recover the dependence on these quantum numbers, it is necessary to 
introduce exact projections in the HS transformation. These projections can 
 lead to a “sign” problem even for good-sign interactions. 

		E J(β) 		154Sm
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Using the imaginary-time response function of the mass quadrupole, 
the lowest J=2 energy is 0.0819(7)  MeV (preliminary) 



Imaginary-time response functions 

The lowest energy level for a given spin can be accurately extracted from 
imaginary-time response functions of one-body observables. 

		CQ2(τ )= 〈Q2(τ )Q2(0)〉~e
−τ (E2+−E0 )

Example: for large      and sufficiently large      β

where       is the mass quadrupole operator 		Q2 C.N. Gilbreth (INT)  
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The lowest J=2 level is 
 determined from the plateau in 
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                                     Conclusion 
•  Finite-temperature AFMC in Fock space is a powerful method in the 
framework of the configuration-interaction shell model (e.g., for nuclei and 
trapped cold atoms)  

•   Sign rule determines a broad class of good sign interactions 

•   Practical solution to the sign problem in the nuclear shell model: simple 
extrapolations from a family of good sign interactions 

•   The odd particle-number sign problem was circumvented by using the 
imaginary-time Green’s functions in the even particle-number systems 

•  Projection on good quantum numbers (e.g., spin and parity) can lead to large 
fluctuations in the projected observables at low temperatures 

Outlook 

•  Explore other HS decompositions (the sign problem depends on the 
 decomposition) 
 
•  Use imaginary-time response functions of one-body observables to extract 
 the lowest excitation energy for given values of good quantum numbers 


