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The shell model Monte Carlo (SMMC) method

» Most microscopic treatments of heavier nuclei are based on mean-field
methods but important correlations can be missed.

» The configuration-interaction (Cl) shell model accounts for correlations but
diagonalization methods are limited to ~ 10" configurations.

The SMMC method enables microscopic calculations in spaces that
are many orders of magnitude larger (~ 102°).

Gibbs ensemble ¢ " (B=1/T) can be written as a superposition of
ensembles Ua of non-interacting nucleons in time-dependent fields O'(T)

e PP = JD[O‘] G U,
» The integrand reduces to matrix algebra in the single-particle space (of

typical dimension 50 — 100).

* The high-dimensional integration over O is evaluated by Monte Carlo
methods.
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Level densities

Level density is the most important statistical nuclear property (Fermi’ s
golden rule, Hauser-Feshbach theory of statistical nuclear reactions, etc.), but
its calculation is a difficult many-body problem in the presence of correlations.

« Most approaches are based on empirical modifications of the Fermi gas
formula or on mean-field approximations

Level density in the SMMC approach
H. Nakada and Y. Alhassid., PRL 79, 2939 (1997)

» Calculate the thermal energy E(f) =< H > versus ,B and integrate
—dInZ/df = E(f) to find the partition function Z(/3)

* The average state density is found from Z(/3) in the saddle-point
approximation:

L sz
p(E)= e
N2rT’C
S(E) = canonical entropy; C = canonical heat capacity.

S(EY=InZ+ SE C=-[°0E/df



Circumventing the odd-particle sign problem in SMMC
A. Mukherjee and Y. Alhassid, Phys. Rev. Lett. 109, 032503 (2012)

Applications of SMMC to odd-even and odd-odd nuclei has been hampered by
a sign problem that originates from the projection on odd number of particles.

« A breakthrough was a method we introduced to calculate the ground-state
energy of the odd-particle system.

Consider the imaginary-time single-particle Green’ s functions
G,(7) =Zm<Tavm(r)aIm(O)> for orbitals v=nl/j
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Statistical errors of ground-state energy of Green’s funCtion/method
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Pairing gaps in iron region nuclei from odd-even mass differences

*« SMMC in the complete fpg,,, shell (good agreement with experiments)
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Application to nickel isotopes: theory versus experiment
M. Bonett-Matiz, A. Mukherjee and Y. Alhassid, Phys. Rev. C Rapid Com. 88, 011302 (2013)

- Recent determination of level densities in nickel isotopes from proton
evaporation spectra [A. Voinov et al. (Ohio University group) 2012].

« We can now calculate accurate ground-state energies and thus microscopic
level densities for both even-even and even-odd isotopes.

Excellent agreement
with experiments:

(i) level counting,

(ii) p evaporation,
(iii) neutron
resonance data.
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Microscopic emergence of collectivity in heavy nuclei

Heavy nuclei exhibit various types of collectivity (vibrational, rotational, ...
and their crossovers) that are well described by empirical models.

However, a microscopic description (e.g., Cl shell model) has been lacking.

Can we describe vibrational and rotational collectivity in heavy nuclei
using the framework of the Cl shell model ?

The large model space required (e.g., ~ 102°in rare-earth nuclei)
necessitates the use of SMMC.

The various types of collectivity are usually identified by the corresponding
spectra, but SMMC does not provide detailed spectroscopy.



The behavior of < jz > versus I is sensitive to the type of collectivity:
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Single-particle model space:

protons: 50-82 shell plus 1f,, ; neutrons: 82-126 shell plus 04,,, and 1g,,.



Crossover from vibrational to rotational collectivity in heavy nuclei
C. Ozen, Y. Alhassid, H. Nakada, Phys. Rev. Lett. 110, 042502 (2013)
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- Add the contribution of higher levels using the experimental level
density to get an experimental values at higher T.
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SMMC describes well the crossover from vibrational to rotational
collectivity in good agreement with the experimental data at low 7'



Level densities in samarium and neodymium isotopes

level counting n resonance
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» Excellent agreement of SMMC densities with various experimental data sets.



Collective enhancement factor

Collective enhancement factors K are one of the least understood topics
in level densities and are usually treated empirically.

We define K as the ratio of the SMMC state density to the
Hartree-Fock-Bogoliubov (HFB) intrinsic density.
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» The damping of vibrational enhancement is correlated with the pairing transition
» Aregime of rotational enhancement up to the shape transition.

* The damping of rotational enhancement is correlated with the shape transition.



Spin distributions in SMMC

Y. Alhassid, S. Liu and H. Nakada, Phys. Rev. Lett. 99, 162504 (2007)
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0’= spin cutoff parameter (increases with excitation energy).

» Staggering effect (in spin) for even-even nuclei.

» Analysis of experimental data [T. von Egidy and D. Bucurescu, PRC 78,
051301 (2008)] confirmed our prediction.



Nuclear deformation in a spherical shell model approach
Y. Alhassid, C.N. Gilbreth, and G.F. Bertsch, arXiv:1408:0081 (2014)

Fission dynamics requires level densities as a function of deformation.

« Deformation is a key concept in understanding heavy nuclei but it is based
on a mean-field approximation that breaks rotational invariance.

The challenge is to study nuclear deformation in a framework that
preserves rotational invariance.

We calculated the distribution of the axial mass quadrupole in the lab frame
using an exact projection on Q,, (novelinthat [Q,,,H]#0).
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Application to rare-earth nuclei

154 [
Sm (a deformed nucleus) 0-0015
= 0.001
« At low temperatures, the distribution is similar ~ 0.0005 |
to that of a prolate rigid rotor S TSI, ~—
0.0015 T=1.14 MeV 1

m) a model-independent signature of deformation.

0.001 1
0.0005 /\ -
« At the HFB shape transition temperature e

P(q)

PR 0.0015 | ' T=0.1 MeV |
(T=1.14 MeV), the distribution is still skewed. _ e
= 0001 rgpmmc i Rigid rotor
[am AN
e : , 00005 | A TSN
« The distribution at high temperatures is close NS
to a Gaussian 21200 -600 0 600 1200
q (fm%)
148 . : : : : ,
Sm (a spherical nucleus) 0.0015 [ g,m 201 eV |
S 0001 |
« The distribution is close to a Gaussian even ™ 0.0005 |
at low temperatures. 0

21200 -600 0 600 1200
2
q (fm”)



Intrinsic deformation from lab frame distributions

« Information on intrinsic deformation can be obtained from the expectation
values of rotationally invariant combinations of (), ,

Example: the lowest order invariant is second order {Q - Q)

B =(0-0))" e
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The sharp shape transition in HFB is :E
washed out in the finite-size nucleus = o1 S:/\mc
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T |
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« The quadrupole invariants can be calculated from lab frame moments of O,,

=) Construct the joint level density distribution p(f,E,)= p(E )P, ()
where P (f3) is the intrinsic shape distribution at given excitation energy E.



Conclusion

« SMMC is a powerful method for the microscopic calculation of level densities
In very large model spaces.

* We have circumvented the odd-particle sign problem in SMMC, enabling the
calculation of level densities of odd-mass nuclei.

 Microscopic description of collectivity in heavy nuclei.

« Damping of the collective vibrational and rotational enhancement factors of
level densities correlates with the pairing and shape phase transitions.

* Description of nuclear deformation in a rotationally invariant framework.

Prospects

« Other mass regions (actinides, unstable nuclei,...).
* Level densities as a function of deformation (useful for fission).

* Derive global effective shell model interactions from density functional theory.



