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e Introduction

« Superconducting metallic grains (nanoparticles):
BCS (bulk) regime and fluctuation-dominated regime.

(I) Nanoparticles without spin-orbit scattering: competition between pairing
(superconductivity) and spin exchange correlations (ferromagnetism).

 Thermodynamic signatures of the coexistence of pairing and spin
exchange correlations.

(II) Nanoparticles with spin-orbit scattering
Many-particle level response to an external magnetic field:
g-factor and level curvature statistics

» Effects of pairing correlations on the g-factor and level curvature
distributions.

 (Conclusion



Introduction: ultra-small metallic grains (nanoparticles)

« Discrete energy levels extracted from non-linear

conductance measurements (Ralph et al). G
« Experiments on Al, Co, Au, Cu, Ag. Aluminum
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 Ultra-small (nano-scale) grains: remTane g
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* Recent high-quality data in Au grains. rrekal RarCSAricls
(83-10 nm)

Superconducting grains

Consider materials that are superconductors in the bulk and
characterized by a pairing gap A.

O = single-particle level spacing.
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Many-particle spectrum for an
even number of electrons:
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(i) Large grains (~10nm) A>§
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« The Bardeen-Cooper-Schrieffer (BCS) theory is valid (BCS regime)

(i) Small grains (~1nm) A<oO

 BCS theory breaks down.
Anderson: “superconductivity would no longer be possible.”

A mesoscopic regime dominated by large fluctuations of the pairing gap
(fluctuation-dominated regime).

Do signatures of pairing correlations survive the large fluctuations ?



(I) Superconducting nanoparticles without spin-orbit scattering

An isolated chaotic grain with a large number of electrons is described by
the universal Hamiltonian [Kurland, Aleiner, Altshuler, PRB 62, 14886 (2000) ]
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* Discrete single-particle levels El_ (spin degenerate) and wave functions follow
random matrix theory (RMT).

» Attractive BCS-like pairing interaction ( p7 = ZaTTal is the pair
operator ) with coupling G >0. —

* Ferromagnetic exchange interaction ( § is the total spin of the grain)
with exchange constantJ >0 .

Competition between pairing and exchange correlations: pairing favors
minimal ground-state spin, while exchange favors maximal spin polarization.



Eigenstates of the universal Hamiltonian:
The eigenstates |Ug; By SM > factorizes into two parts:

U is a subset of doubly occupied and empty levels.
B is a subset of singly occupied levels

(i) |Ug > are zero-spin eigenstates of the reduced BCS Hamiltonian
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(i) | By SM > are eigenstates of S? , obtained by coupling spin-1/2
singly-occupied levels in B to total spin .S and spin projection M .
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S=0 S=1
Exact solution: Richardson’s solution for the reduced BCS plus spin algebra.




Exact solution: coexistence of superconductivity and ferromagnetism
in the fluctuation-dominated regime

Reviewed in Y.A., K. Nesterov and S. Schmidt, Phys. Scr. T 151, 014047 (2012)
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Mean field approximation (S-dependent BCS) fails to reproduce coexistence.



Zeeman field

gUH/8=0
* A Zeeman field broadens the
coexistence regime and makes it
accessible to typical values of J,
{ gUH/8=2.6

Stoner staircase
(Ground-state spin versus.J_ /o)

For a fixed A/o the spin increases by
discrete steps as a function of J /&

 Spin jumps: the first step can have AS > 1




The coexistence of pairing and exchange correlations:
thermodynamic signatures

K. Nesterov and Y.A., PRB 87, 014515 (2013)
Richardson’s solution becomes impractical at higher temperatures.

A finite-temperature method:
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BCS
(i) Exact spin projection method \ - o
BJ S(S+1) BH Reduced pairing Hamiltonian
—PH § kY16
Ire = 2 € Tr.e
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Trace over states with fixed spin S

TreX =2S+D)(Try s X —Trg 5, X)

Trace with fixed spin component §7

See Y.A., Liu and Nakada, PRL 99, 162504 (2007).



(i) Functional integral representation (Hubbard-Stratonovich) for the reduced
pairing Hamiltonian:
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one-body Hamiltonian in pairing field A(7)
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m#0
exact integration over Ag saddle-point integration over A,, for each static Ag
(static-path approximation (SPA)) (random-phase approximation (RPA))

(iii) Number-parity projection to capture odd-even effects.

P, = % (1 + nem) (n =1 foreven N, n = —1 for odd N)

See also Rossignoli, Canosa and Ring, PRL 80, 1853 (1998).



Comparison with exact results for particular realizations of the

single-particle spectrum

A§=3.0,1/8=0.5

A§=0.5, J/5=05
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The static path + RPA+number-parity projection is an accurate method

yet very efficient.



Heat capacity
in nuclei
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Fluctuation-dominated regime
Ad=1.0

Ad=0.5

Heat capacity

Ad=3.0

BCS regime =

odd T

1Js/6 =0.0

equally-spaced } mesoscopic

S.p. spectrum +

fluctuations

1J,/6 = 0.6
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Fluctuation-dominated regime: exchange correlations suppress the odd-
even signatures of pairing correlations.

BCS regime: exchange correlations enhance the S-shoulder in the even case.



Spin susceptibility

Fluctuation-dominated regime BCS regime ===
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 Fluctuation-dominated regime: exchange correlations enhance
the fluctuations of the susceptibility.
* BCS regime: exchange correlations enhance re-entrant effect.



(IT) Superconducting nanoparticles with spin-orbit scattering
K. Nesterov and Y.A. (2014)

Spin-orbit scattering breaks spin symmetry but preserves time-reversal.

The exchange interaction is suppressed but the pairing interaction remains
unaffected.

We studied the response of energy levels in the nanoparticle to external
magnetic field: linear (g factor) and quadratic (level curvature) terms.

Single-particle levels vs magnetic field B
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Brouwer, Waintal and Halperin (2000); Matveev, Glazman and Larkin (2000)



* Recent advances (use of organic substrates) are providing much better
control over the size and shape the metallic grain.

 Level and g-factor statistics in a gold grain are in agreement with the
symplectic ensemble of RMT (Ralph et al, 2008).
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g factor and level curvature in the presence of interactions

dl/dV curves in tunneling spectroscopy experiments measure the energy
differences AE,, between many-particle states with N+1 and N electrons

Assume one-bottleneck geometry:

decay into the ground state before
another electron is added.

Ri > R

For tunneling into the even ground state AE, = E)"' — E

Many-body levels of the odd nanoparticle are doubly degenerate (Kramers’
degeneracy), and they split in a magnetic field

AE = AE(O)i%g,LLBB+%KBz

g and « reduce to the single-particle level quantities in the
constant-interaction model.



Universal Hamiltonian with strong spin-orbit scattering

H = Zeaa —~GP'P-BM.

Rt (oAl 104

where a =1,2 is the Kramers doublet with energy €, and P' = Z“allal2
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g-factor (linear correction)

For the even ground state:
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The many-particle g factor reduces to the single-particle g factor of the
ddd-particle blocked orbital.

g-factor distributions are not affected by pairing correlations.



Level curvature k (quadratic correction)
In second-order perturbation theory (even ground state to odd ground state)
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In the Cl model (i.e., non-interacting), Kk reduces to the single-level curvature
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The single-level curvature distribution
Is symmetric around k=0.




K in the presence of pairing correlations with A > O
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Positive contributions to k come from the even curvature
IEéve —ng | >2A (there is a pairing gap in the even grain)
and K is suppressed.

Negative contributions to k come from the odd curvature

IE(Z)Ve+1 — ng“ | (no pairing gap in the odd grain)
can be small and K is enhanced

The curvature distribution is asymmetric and shifted towards the left
(negative values)



Results for the level curvature distributions

« Single-particle levels follow the Gaussian symplectic ensemble (GSE).
* Only spin contribution to magnetization is included.

« Exact calculations versus a generalized BCS approach.
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Similar qualitative behavior is observed
in the the exact results and in the BCS
approximation

Many-particle level curvature
distribution is highly sensitive
to pairing correlations (even in
the fluctuation-dominated

regime) ok
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Can be used as a tool to probe pairing correlations in the single-electron

tunneling spectroscopy experiments.



Conclusion
* A superconducting nano-scale metallic grain is characterize by two regimes:
BCS regime A /6§ >>1 and fluctuation-dominated regime A/o < 1.
(I) In the absence of spin-orbit scattering:
« Competition between pairing and spin exchange correlations

« Coexistence of superconductivity and ferromagnetism in the fluctuation-
dominated regime

« Effects of exchange correlations on the odd-even signatures of pairing
correlations are qualitatively different in the BCS and fluctuation-dominated
regimes.

(I1) In the presence of spin-orbit scattering:
« Spin exchange correlations are suppressed.
« g-factor statistics are unaffected by pairing correlations.

« Level curvature statistics is highly sensitive to pairing correlations



