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• Statistical model of compound nucleus reactions. 

• Recent experiment reporting violation of expected Porter-Thomas distribution (PTD) for 
neutron resonance widths in Pt isotopes.   

• Overview of proposed theoretical explanations for PTD violation. 

• Novel computational model for the simultaneous study of resonances and cross sections 
within the statistical model. 

• Results for cross sections and neutron width fluctuations in the reaction n + 194Pt. 

• Conclusions: We find no violation of the PTD for neutron widths.  Observation of apparent 
PTD violation could occur due to a common assumption in experimental analysis. 

• Outlook for future work.

PF, G. F. Bertsch, and Y. Alhassid, arXiv:1710.00792 (2017)



Statistical model of compound nucleus reactions

GOE

channels

• Compound nucleus (CN): equilibrated system of incident particle and 
target nucleus.  The rapid increase of the nuclear level density with 
energy makes a realistic description of CN states challenging. 

• Statistical model of CN reactions: The CN states are described by the 
Gaussian orthogonal ensemble (GOE) of random-matrix theory 
[Mitchell, Weidenmüller, Richter RMP (2010)].  

• Generic theory for chaotic quantum systems with time-reversal and 
rotational symmetries.  Applications in atomic and mesoscopic physics. 

• Widely used in reaction calculations.  Significantly modifies Hauser-
Feshbach theory of CN reactions. 

• Used in experimental analysis, e.g. DICEBOX code to simulate 
gamma-ray cascades from CN resonances [Bečvár, NIM A (1998)].



Experiment contradicts the statistical model

Koehler, Bečvár, Krtička, 
Harvey, and Guber, PRL (2010) 

PTD

�n,r =
�n,r(E)

�̄n(E)

from maximum 
likelihood fits. 
ν = 1 for PTD

• Statistical model predicts the Porter-
Thomas distribution for reduced width of 
any channel.  
 
 

• PTD observed in scattering through other 
chaotic quantum systems, e.g. quantum 
dots [Alhassid RMP (2000)]. 

• Experiment by Koehler et al. at Oak 
Ridge National Laboratory in 2010 
measured many s-wave neutron 
resonances of Pt isotopes. 

• Statistical analysis of reduced neutron 
widths excluded the PTD to a 
significance of 99.997%!

CN quantum dot

reduced neutron width
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Statistical model explanations for PTD violation 
• Assuming the validity of the statistical model, 

how could PTD violation occur? 

• Explanation I [Weidenmüller PRL (2010)] 

- usual experimental assumption is that the 
average neutron width is proportional to E1/2.   

- a near-threshold bound or virtual state of the 
neutron channel potential in Pt isotopes 
changes this energy dependence. 

• Explanation II [Celardo, Auerbach, Izrailev, 
Zelevinsky PRL (2011); 
Volya, Weidenmüller, Zelevinsky PRL (2015)]  

- nonstatistical interactions of CN resonances 
through the channels can change reduced 
width distribution from PTD. 

• No study of resonance width fluctuations of Pt 
isotopes in a realistic reaction model.

Volya, Weidenmüller, Zelevinsky 



Novel computational model for simultaneous 
study of resonances and cross sections

• Our model combines a realistic description of the 
entrance neutron channel with the usual GOE description 
of the internal CN states. 

• Based on the Mazama code of G. F. Bertsch [to be 
published].  
 
 
 

• Neutron channel described by discretized radial equation on a 
spatial mesh with Woods-Saxon channel potential. 

• CN states have a GOE spectrum with average spacing D.  
Constant width Γγ added to each state to account for gamma 
decay. 

• Coupling between neutron channel and each internal state µ 
at one spatial site re. 

• Coupling strength: vµ = (v0 /Δr1/2) sµ. v0 is a coupling 
parameter.  sµ is a Gaussian random variable with zero mean, 
unit variance that accounts for GOE eigenvector fluctuations.

model 
HamiltonianH =
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Resonance determination

• To find the complex resonance 
wavenumbers kr, solve Schrödinger equation 
with appropriate boundary conditions 

- neutron wavefunction is regular at origin. 

- neutron wavefunction is purely outgoing. 

• With discretized approach, obtain a  
nonlinear eigenvalue problem (NEVP). 

• Solve NEVP with an iterative method to find 
resonance wavenumbers kr. 

• Find resonance energies, total widths, and 
neutron widths from wavenumbers.   

• Can calculate elastic and capture cross 
sections [details in additional slides].

u(r) ! B(k)eikr
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Application to n + 194Pt: Baseline Parameter Set

• (V0, r0, a0) = (-44.54 MeV, 1.27 fm, 0.7 fm) from Bohr and Mottelson Vol I.   
D = 82 eV and Γγ = 72 meV from RIPL-3. 

• Tune v0 = 11 keV-fm1/2 to reproduce roughly RIPL-3 neutron strength function parameter at 
8 keV neutron energy. 

• Compared our calculations with the JEFF-3.2 library (calculation based on the reaction 
code TALYS) and experimental capture cross sections [Koehler and Guber PRC (2012)].   

• We know of no published elastic scattering cross sections for this reaction.
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Average neutron width for baseline parameter set

• Reduced neuron width:  

• We calculate the average neutron width by averaging all 
widths from 100 GOE realizations over bins of 0.5 keV width. 

• Compare with E1/2 and with neutron probability density 
(square of neutron wave function) at interaction point          

average neutron width
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Reduced neutron width distributions  
for baseline parameter set

• Reduction A: extract reduced neutron widths with calculated average 
neutron widths. 

• Reduction B: extract reduced neutron widths using assumption 

• y = ln(x), where                     is the normalized reduced neutron 
width. 

• Model with baseline parameters follows statistical model predictions.

Histograms are model 
calculations,  
solid lines are PTD
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Physical parameter variation
• Do we see evidence for explanations for PTD violation within a reasonable parameter 

range? 

• Two neutron channel potential depths 

- Baseline depth V0 = -44.54 MeV from Bohr and Mottelson. 

- V0 = -40.85 MeV with near-threshold bound state E0 ≅ -0.54 keV. 

• For each depth, we fit the coupling v0 to the RIPL-3 strength function parameter  
S0 = 2 x 10-4 eV-1/2 at 8 keV. 

• We varied v0 by a factor of 2 smaller and larger than this fit value.

at 8 keV

over bin 5-7.5 keV. 
exp value: 0.6 b



• In the presence of a near-threshold bound state of neutron channel 
potential, average neutron widths deviate noticeably from E1/2. 

• Analytic form for energy dependence of average neutron width                                              
derived by Weidenmüller [PRL 2010] fits model calculations if 
bound state energy E0 = -0.54 keV is used.  

• No dependence of the average width curve on the coupling strength.

u2
E(re) /

p
E
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Effect on average neutron widths
V0 = -44.54 MeV 
baseline depth

V0 = -40.85 MeV 
has bound state E0 ≅ -0.54 keV

couplings fitted 
to RIPL-3 
neutron strength 
function at 8 
keV

 0

 1

 2

E (keV)

E1/2

uE(re)
2

 0

 2

 4

E (keV)

E1/2

uE(re)
2

Analytic



Bound and virtual states

• Bound states of a potential are poles of the S matrix on the positive 
imaginary k axis.   

• As an s-wave potential is made less attractive, a bound state crosses zero 
and becomes a virtual state on the negative imaginary k axis. 

• The only parameter in the formula                                 is the magnitude of 
the negative bound or virtual state energy |E0|.   

• If |E0| is relatively large compared to resonance energies, E1/2 is a good 
approximation to average width energy dependence. 

• Maximal deviation from E1/2 is for zero-energy resonance E0 = 0, where 

J. R. Taylor, Scattering 
Theory: The Quantum Theory 
of Nonrelativistic Collisions 
(Wiley, New York, 1972) 
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Effect on reduced neutron widths

• Distributions extracted using reduction A match PTD well. 

• Distributions extracted with reduction B, i.e.                          , are noticeably broader than the PTD. 

• When the neutron channel has a zero-energy resonance, reduction B shows increased deviation 
from the PTD vs. the case of a near-threshold bound state. 

• Maximum-likelihood fits of reduction B to a chi-squared distribution yield ν < 1, in qualitative 
agreement with experimental value ν ≅ 0.5. 

• No observable dependence of reduced width distribution on coupling strength.

histograms are model 
calculations 
solid lines are PTD

V0 = -40.85 MeV, 
bound state with  
E0 ≅ -0.54 keV
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Conclusions

• We find no violation of the PTD within the statistical model! 

• Nonstatistical interactions of the resonances through the continuum 
do not significantly affect the reduced neutron width distribution. 

• When the neutron channel potential has a near-threshold bound or 
virtual state, the energy dependence of the average neutron width 
deviates significantly from the usually assumed E1/2 form. 

• Distributions of reduced neutron widths extracted using the 
assumption                          in this case deviate from the PTD and 
yield ν < 1 when fitted to a chi-squared distribution.  

• Omission of the modified energy dependence of the average neutron 
width in experimental analysis is the only viable explanation for the 
experimental findings within the statistical model.

�̄n(E) /
p
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Outlook

Thank you for your attention!

• Caveat: we can fully explain the experiment only if there is a weakly bound or 
virtual state with energy of only a few keV (≲ 5 or so keV) for each of the three 
isotopes 192,194,196Pt.   

• A reanalysis of the experimental results using appropriate analytic form for the 
average neutron width with |E0| as a free parameter would be useful. 

• Improvement of model predictions for neutron width fluctuations 

- Comparison with experimental elastic cross sections, which are sensitive to 
neutron channel potential.  

- Use of microscopic theory to limit possible values of v0.   

• How to expand the model to describe other reactions? 

- Realistic description of other channels. Multiple channels?  Coupled 
channels? 

- Theory of average channel-CN coupling.



Cross section calculation in Mazama

• Developed by G. F. Bertsch [to be published] 

• Asymptotic scattering boundary condition for 
neutron wave function 

• In the mesh representation, this BC holds for 
points Nn of the mesh edge and Nn +1 just 
beyond the mesh edge.  Thus: 

• Mazama Schrödinger equation becomes 

• Solving this equation yields:

u(r) ! A[e�ikr � Snne
ikr]

S-matrix element for 
neutron channel

u(Nn)

u(Nn+1)
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Iterative method for finding resonances
• Nonlinear eigenvalue problem: H = Mazama Hamiltonian, 

• Taylor expand M at resonance solution kr about guess kg.  

M(k)~u = [H� E1� teik�rC]~u = 0

M(kr)~u = M(kg)~u+
dM

dk

����
k=kg

(kr � kg)~u = 0

) M(kg)~u = (kg � kr)
dM

dk

����
k=kg

~u .
generalized 
eigenvalue problem 
(GEVP)

• GEVP is easily solved by inversion because dM/dk is diagonal

Cij = �i,Nn+1

E =
~k2
2m

M0(kg) = �i�rteik�rC� 2k
~2
2m

1

• Find complex eigenvalue           of                                   with minimal 
modulus

[M0(kg)]
�1M(kg)�min

• Iterate:                                 until convergence is reached.kg+1 = kg � �min
Bykov and Doskolovich 
J. Lightwave Techno. 
2013

t =
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Iterative method contd.: initial guesses

• To find initial guesses kg expand nonlinear EVP to second order 
in kΔr.  Obtain a quadratic eigenvalue problem (QEVP) 

• Solve QEVP by linearization: introduce                and obtain 

• Combine two conditions into GEVP

⇥
U� kV � k2W

⇤
~u = 0 U = H� tC V = it�rC

W = (~2/2m)1� (t�r2/2)C

U~u�V~v � kW~v = 0

~v = k~u
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◆
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• Easily solved because W is diagonal.  Yields 2(Nn + Nc) guesses 
kg.  We place restrictions on real and imaginary parts of 
corresponding guess energies to select initial guesses for neutron 
resonances. 

Tisseur and Meerbergen, 
SIAM Rev. 2001)



Goodness of PTD fit to distributions

• Reduced chi-squared value: 

• Rough criterion for a good fit is 

• Reduction A always matches PTD well. 

• Baseline depth V0 = -44.54 MeV: reduction B matches PTD. 

• Depth with shallow bound state V0 = -40.85 MeV: poor fit to PTD.
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Maximum-likelihood fits

• We found the best fit value of ν for a chi-
squared distribution by maximizing the 
likelihood function.  

• Our results for reduction B in the case of a 
near-threshold bound state yield ν < 1, in 
qualitative agreement with experimental  
value               . ⌫fit ⇡ 0.5

P(x|⌫) = ⌫(⌫x)⌫/2�1

2⌫/2�( ⌫2 )
e
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L(⌫) =
NdataY

i=1

P(xi|⌫)

likelihood function normalized 
reduced width 
data points

PTD: ν = 1


