

Neutron width statistics in a realistic resonance-reaction model

Paul Fanto Yale University Nuclear Structure and Reactions: Building Together for the Future GANIL 2017

PF, G. F. Bertsch, and Y. Alhassid, arXiv:1710.00792 (2017)

- Statistical model of compound nucleus reactions.
- Recent experiment reporting violation of expected Porter-Thomas distribution (PTD) for neutron resonance widths in Pt isotopes.
- Overview of proposed theoretical explanations for PTD violation.
- Novel computational model for the simultaneous study of resonances and cross sections within the statistical model.
- Results for cross sections and neutron width fluctuations in the reaction $n + {}^{194}Pt$.
- Conclusions: We find no violation of the PTD for neutron widths. Observation of apparent PTD violation could occur due to a common assumption in experimental analysis.
- Outlook for future work.

Statistical model of compound nucleus reactions

- Compound nucleus (CN): equilibrated system of incident particle and target nucleus. The rapid increase of the nuclear level density with energy makes a realistic description of CN states challenging.
- Statistical model of CN reactions: The CN states are described by the Gaussian orthogonal ensemble (GOE) of random-matrix theory [Mitchell, Weidenmüller, Richter RMP (2010)].
- Generic theory for chaotic quantum systems with time-reversal and rotational symmetries. Applications in atomic and mesoscopic physics.
- Widely used in reaction calculations. Significantly modifies Hauser-Feshbach theory of CN reactions.
- Used in experimental analysis, e.g. DICEBOX code to simulate gamma-ray cascades from CN resonances [Bečvár, NIM A (1998)].

Experiment contradicts the statistical model

• Statistical model predicts the Porter-Thomas distribution for reduced width of any channel.

reduced neutron width

$$\gamma_{n,r} = \frac{\Gamma_{n,r}(E)}{\bar{\Gamma}_n(E)}$$

$$\mathcal{P}_{\rm PT}\left(\frac{\gamma}{\langle\gamma\rangle}\right) = \frac{1}{\sqrt{2^2}}$$

- PTD observed in scattering through other chaotic quantum systems, e.g. quantum dots [Alhassid RMP (2000)].
- Experiment by Koehler *et al.* at Oak Ridge National Laboratory in 2010 measured many *s*-wave neutron resonances of Pt isotopes.
- Statistical analysis of reduced neutron widths excluded the PTD to a significance of 99.997%!

Sample	E _{max} (keV)	a_0 (eV ^{-(1/2)})	n_0	$\hat{\nu}_{\mathrm{expt}}$
¹⁹² Pt	4.98	7.00×10^{-8}	153	$0.57\substack{+0.16 \\ -0.15}$
¹⁹⁴ Pt	15.93	2.25×10^{-7}	161	$0.47\substack{+0.19 \\ -0.18}$
¹⁹⁶ Pt	15.99	3.19×10^{-7}	68	$0.60\substack{+0.28 \\ -0.26}$

Koehler, Bečvár, Krtička, Harvey, and Guber, PRL (2010) from maximum likelihood fits. v = 1 for PTD

Statistical model explanations for PTD violation

- Assuming the validity of the statistical model, how could PTD violation occur?
- Explanation I [Weidenmüller PRL (2010)]
 - usual experimental assumption is that the average neutron width is proportional to $E^{1/2}$.
 - a near-threshold bound or virtual state of the neutron channel potential in Pt isotopes changes this energy dependence.
- Explanation II [Celardo, Auerbach, Izrailev, Zelevinsky PRL (2011);
 Volya, Weidenmüller, Zelevinsky PRL (2015)]
 - nonstatistical interactions of CN resonances through the channels can change reduced width distribution from PTD.
- No study of resonance width fluctuations of Pt isotopes in a realistic reaction model.

Novel computational model for simultaneous study of resonances and cross sections

- Our model combines a realistic description of the entrance neutron channel with the usual GOE description of the internal CN states.
- Based on the Mazama code of G. F. Bertsch [to be published].

 $\mathbf{H} = \begin{pmatrix} \mathbf{H_n} & \mathbf{V} \\ \mathbf{V}^T & \mathbf{H_c} \end{pmatrix} \longleftarrow \begin{array}{c} \text{model} \\ \text{Hamiltonian} \\ \end{array}$

- Neutron channel described by discretized radial equation on a spatial mesh with Woods-Saxon channel potential.
- CN states have a GOE spectrum with average spacing D. Constant width Γ_γ added to each state to account for gamma decay.
- Coupling between neutron channel and each internal state μ at one spatial site r_e .
- Coupling strength: $v_{\mu} = (v_0 / \Delta r^{1/2}) s_{\mu}$. v_0 is a coupling parameter. s_{μ} is a Gaussian random variable with zero mean, unit variance that accounts for GOE eigenvector fluctuations.

neutron wavefunction (unnormalized)

Resonance determination

- To find the complex resonance wavenumbers k_r, solve Schrödinger equation with appropriate boundary conditions
 - neutron wavefunction is regular at origin.
 - neutron wavefunction is purely outgoing.
- With discretized approach, obtain a nonlinear eigenvalue problem (NEVP). $\mathbf{M}(k)\vec{u}$:
- Solve NEVP with an iterative method to find resonance wavenumbers k_r .
- Find resonance energies, total widths, and neutron widths from wavenumbers.
- Can calculate elastic and capture cross sections [details in additional slides].

$$\begin{split} u(0) &= 0 \\ u(r) \to B(k) e^{ikr} \quad \text{for large r} \\ \Rightarrow u(N_n + 1) &= u(N_n) e^{ik\Delta r} \end{split}$$

$$\mathbf{M}(k)ec{u} = [\mathbf{H} - E - te^{ik\Delta r}\mathbf{C}]ec{u}$$

 $\overrightarrow{}$ \uparrow
 $t = \hbar^2/2m\Delta r^2$, $\mathbf{C}_{ij} = \delta_{i,N_n}\delta_{ij}$

$$E_r - \frac{i}{2}\Gamma_r = \frac{\hbar^2 k_r^2}{2m}$$
$$\Gamma_{n,r} = \Gamma_r - \Gamma_\gamma$$

Application to $n + {}^{194}Pt$: Baseline Parameter Set

- $(V_0, r_0, a_0) = (-44.54 \text{ MeV}, 1.27 \text{ fm}, 0.7 \text{ fm})$ from Bohr and Mottelson Vol I. D = 82 eV and $\Gamma_{\gamma} = 72$ meV from RIPL-3.
- Tune $v_0 = 11$ keV-fm^{1/2} to reproduce roughly RIPL-3 neutron strength function parameter at 8 keV neutron energy.
- Compared our calculations with the JEFF-3.2 library (calculation based on the reaction code TALYS) and experimental capture cross sections [Koehler and Guber PRC (2012)].
- We know of no published elastic scattering cross sections for this reaction.

Average neutron width for baseline parameter set

histogram is model calculations

- Reduced neuron width: $\gamma_{n,r} = \frac{\Gamma_{n,r}(E)}{\overline{\Gamma}_n(E)} \leftarrow$ neutron width \leftarrow average neutron width
- We calculate the average neutron width by averaging all widths from 100 GOE realizations over bins of 0.5 keV width.
- Compare with E^{1/2} and with neutron probability density (square of neutron wave function) at interaction point $u_E(r_e)^2$

Reduced neutron width distributions for baseline parameter set

Histograms are model calculations, solid lines are PTD

- Reduction A: extract reduced neutron widths with calculated average neutron widths.
- Reduction B: extract reduced neutron widths using assumption $\bar{\Gamma}_n(E) \propto \sqrt{E}$
- $y = \ln(x)$, where $x = \gamma/\langle \gamma \rangle$ is the normalized reduced neutron width.
- Model with baseline parameters follows statistical model predictions.

Physical parameter variation

- Do we see evidence for explanations for PTD violation within a reasonable parameter range?
- Two neutron channel potential depths
 - Baseline depth $V_0 = -44.54$ MeV from Bohr and Mottelson.
 - $V_0 = -40.85$ MeV with near-threshold bound state $E_0 \approx -0.54$ keV.
- For each depth, we fit the coupling v_0 to the RIPL-3 strength function parameter $S_0 = 2 \times 10^{-4} \text{ eV}^{-1/2}$ at 8 keV.
- We varied v_0 by a factor of 2 smaller and larger than this fit value.

$V_0 \; ({ m MeV})$	-	-44.54	1	-	-40.8	5	
$v_0 \; (\text{keV-fm}^{1/2})$	11.0	5.5	22.0	1.97	0.98	3.94	
$S_0 \times 10^4 \; (\mathrm{eV}^{-1/2})$	1.4	0.4	4.6	2.1	0.5	8.5	
$\bar{\sigma}_{el}$ (b)	25.	19.0	28.	288.	300.	118.	at 8 keV
$ar{\sigma}_{\gamma}$ (b)	0.44	0.34	0.46	0.49	0.43	0.54	$\leftarrow \text{over bin 5-7.5 keV.} \\ \leftarrow \text{exp value: 0.6 b}$

Effect on average neutron widths

- In the presence of a near-threshold bound state of neutron channel potential, average neutron widths deviate noticeably from E^{1/2}.
- Analytic form for energy dependence of average neutron width $u_E^2(r_e) \propto \frac{\sqrt{E}}{E + |E_0|}$ derived by Weidenmüller [PRL 2010] fits model calculations if bound state energy $E_0 = -0.54$ keV is used.
- No dependence of the average width curve on the coupling strength.

Bound and virtual states

- Bound states of a potential are poles of the S matrix on the positive imaginary k axis.
- As an *s*-wave potential is made less attractive, a bound state crosses zero and becomes a virtual state on the negative imaginary k axis.
- The only parameter in the formula $u_E^2(r_e) \propto \frac{\sqrt{E}}{E + |E_0|}$ is the magnitude of the negative bound or virtual state energy $|E_0|$.
- If $|E_0|$ is relatively large compared to resonance energies, $E^{1/2}$ is a good approximation to average width energy dependence.
- Maximal deviation from E^{1/2} is for zero-energy resonance $E_0 = 0$, where $u_E(r_e)^2 \propto E^{-1/2}$

Effect on reduced neutron widths

- Distributions extracted using reduction A match PTD well.
- Distributions extracted with reduction B, i.e. $\overline{\Gamma}_n(E) \propto \sqrt{E}$, are noticeably broader than the PTD.
- When the neutron channel has a zero-energy resonance, reduction B shows increased deviation from the PTD vs. the case of a near-threshold bound state.
- Maximum-likelihood fits of reduction B to a chi-squared distribution yield v < 1, in qualitative agreement with experimental value $v \approx 0.5$.
- No observable dependence of reduced width distribution on coupling strength.

Conclusions

- We find no violation of the PTD within the statistical model!
- Nonstatistical interactions of the resonances through the continuum do not significantly affect the reduced neutron width distribution.
- When the neutron channel potential has a near-threshold bound or virtual state, the energy dependence of the average neutron width deviates significantly from the usually assumed E^{1/2} form.
- Distributions of reduced neutron widths extracted using the assumption $\overline{\Gamma}_n(E) \propto \sqrt{E}$ in this case deviate from the PTD and yield v < 1 when fitted to a chi-squared distribution.
- Omission of the modified energy dependence of the average neutron width in experimental analysis is the only viable explanation for the experimental findings within the statistical model.

Outlook

- Caveat: we can fully explain the experiment only if there is a weakly bound or virtual state with energy of only a few keV (≤ 5 or so keV) for each of the three isotopes ^{192,194,196}Pt.
- A reanalysis of the experimental results using appropriate analytic form for the average neutron width with $|E_0|$ as a free parameter would be useful.
- Improvement of model predictions for neutron width fluctuations
 - Comparison with experimental elastic cross sections, which are sensitive to neutron channel potential.
 - Use of microscopic theory to limit possible values of v_0 .
- How to expand the model to describe other reactions?
 - Realistic description of other channels. Multiple channels? Coupled channels?
 - Theory of average channel-CN coupling.

Thank you for your attention!

Cross section calculation in Mazama

- Developed by G. F. Bertsch [to be published] $u(r) \rightarrow A[e^{-ikr} S_{nn}e^{ikr}]$
- Asymptotic scattering boundary condition for neutron wave function
- In the mesh representation, this BC holds for points N_n of the mesh edge and $N_n + 1$ just beyond the mesh edge. Thus:
- Mazama Schrödinger equation becomes $[H E]u(i) = tu(N_n + 1)]\delta_{i,N_n}$

• Solving this equation yields:
$$\frac{u(N_n)}{u(N_n+1)} = tG(E)_{N_n,N_n} \quad G(E) = [H-E]^{-1}$$
$$\Rightarrow S_{nn} = e^{-i(2N_n)\Delta r} \left[\frac{1 - tG(E)_{N_n,N_n} e^{-ik\Delta r}}{1 - tG(E)_{N_n+1,N_n+1} e^{ik\Delta r}} \right]$$

Calculate cross sections: $\sigma_{\rm el} = \frac{\pi}{k^2} |1 - S_{nn}|^2$, $\sigma_{\rm cap} = \frac{\pi}{k^2} (1 - |S_{nn}|^2)$

$$A[e] - S_{nn}e$$

$$S-matrix element for$$

neutron channel

$$\frac{u(N_n)}{u(N_{n+1})} = \frac{1 - \tilde{S}_{nn}}{e^{-ik\Delta r} - \tilde{S}_{nn}e^{ik\Delta r}}$$

$$\tilde{S}_{nn} = S_{nn} e^{ik(2N_n)\Delta r}$$

Iterative method for finding resonances

• Nonlinear eigenvalue problem: $\mathbf{H} =$ Mazama Hamiltonian, $\mathbf{C}_{ij} = \delta_{i,N_n+1}$

$$\mathbf{M}(k)\vec{u} = [\mathbf{H} - E\mathbf{1} - te^{ik\Delta r}\mathbf{C}]\vec{u} = 0 \qquad E = \frac{\hbar k^2}{2m} \quad t = \frac{\hbar^2}{2m\Delta r^2}$$

• Taylor expand M at resonance solution k_r about guess k_g .

$$\mathbf{M}(k_r)\vec{u} = \mathbf{M}(k_g)\vec{u} + \frac{d\mathbf{M}}{dk}\Big|_{k=k_g} (k_r - k_g)\vec{u} = 0$$

$$\Rightarrow \mathbf{M}(k_g)\vec{u} = (k_g - k_r)\frac{d\mathbf{M}}{dk}\Big|_{k=k_g}\vec{u} \cdot \mathbf{I} \cdot \mathbf{I} = 0$$

$$\underset{(\text{GEVP})}{\text{generalized}}$$

• GEVP is easily solved by inversion because dM/dk is diagonal

$$\mathbf{M}'(k_g) = -i\Delta rte^{ik\Delta r}\mathbf{C} - 2k\frac{\hbar^2}{2m}\mathbf{1}$$

- Find complex eigenvalue λ_{\min} of $[\mathbf{M}'(k_g)]^{-1}\mathbf{M}(k_g)$ with minimal modulus
- Iterate: $k_{g+1} = k_g \lambda_{\min}$ until convergence is reached.

Bykov and Doskolovich J. Lightwave Techno. 2013

Iterative method contd.: initial guesses

 To find initial guesses k_g expand nonlinear EVP to second order in k∆r. Obtain a quadratic eigenvalue problem (QEVP)

$$\begin{bmatrix} \mathbf{U} - k\mathbf{V} - k^2\mathbf{W} \end{bmatrix} \vec{u} = 0 \qquad \mathbf{U} = \mathbf{H} - t\mathbf{C} \qquad \mathbf{V} = it\Delta r\mathbf{C} \\ \mathbf{W} = (\hbar^2/2m)\mathbf{1} - (t\Delta r^2/2)\mathbf{C}$$

• Solve QEVP by linearization: introduce $\vec{v} = k\vec{u}$ and obtain

 $\mathbf{U}\vec{u} - \mathbf{V}\vec{v} - k\mathbf{W}\vec{v} = 0$

• Combine two conditions into GEVP

Tisseur and Meerbergen, SIAM Rev. 2001)

$$\begin{pmatrix} 0 & \mathbf{1} \\ \mathbf{U} & -\mathbf{V} \end{pmatrix} \begin{pmatrix} \vec{u} \\ \vec{v} \end{pmatrix} - k \begin{pmatrix} \mathbf{1} & 0 \\ 0 & \mathbf{W} \end{pmatrix} \begin{pmatrix} \vec{u} \\ \vec{v} \end{pmatrix} = 0$$

Easily solved because W is diagonal. Yields 2(N_n + N_c) guesses k_g. We place restrictions on real and imaginary parts of corresponding guess energies to select initial guesses for neutron resonances.

Goodness of PTD fit to distributions

	I	Model	baseline	M2	M3	M4	M5	M6
	V_0	(MeV)	-44	.54		-	-40.8	5
	v_0 (k	$eV-fm^{1/2}$)	11.0	5.5	22.0	1.97	0.98	3.94
code	χ^2_r	PTD A	0.9	0.9	1.1	0.9	0.9	1.2
	χ^2_r	PTD B	0.8	0.9	1.9	202	206	2017

reduction A: with average width from code reduction B: with \sqrt{E} ansatz

number of counts in bin i

 $\chi_r^2 = \frac{1}{N_b - 1} \sum_{i=1}^{N_b} \frac{(O_i - E_i)^2}{E_i} \stackrel{\text{expected}}{\longleftarrow} \underset{\text{ptd}}{\text{number from}} \underset{\text{ptd}}{\longleftarrow} 1$

- Reduced chi-squared value:
- Rough criterion for a good fit is $\chi_r^2 \approx 1$
- Reduction A always matches PTD well.
- Baseline depth $V_0 = -44.54$ MeV: reduction B matches PTD.
- Depth with shallow bound state $V_0 = -40.85$ MeV: poor fit to PTD.

Maximum-likelihood fits

$V_0 ~({ m MeV})$	-44.54	-40.85	
$v_0 ~({\rm keV}{ m -fm}^{1/2})$	11.0 5.5 22.0	1.97 0.98 3.94	
$ u_{\mathrm{fit}}$ A	1.0 1.0 0.99	1.0 1.0 0.98	PTI
$\chi^2_r~~{ m fit}~{ m A}$	0.9 0.9 1.1	0.9 0.9 1.1	
$ u_{\mathrm{fit}}$ B	1.0 1.0 0.97	0.88 0.88 0.88	
$\chi^2_r~~{ m fit}~{ m B}$	0.8 0.9 1.6	46 47 248	

=1

- We found the best fit value of v for a chisquared distribution by maximizing the likelihood function.
- Our results for reduction B in the case of a near-threshold bound state yield v < 1, in qualitative agreement with experimental value $\nu_{\rm fit} \approx 0.5$.

$$\mathcal{P}(x|\nu) = \frac{\nu(\nu x)^{\nu/2-1}}{2^{\nu/2}\Gamma(\frac{\nu}{2})} e^{-\nu x/2}$$

data points

$$L(\nu) = \prod_{i=1}^{N_{\text{data}}} \mathcal{P}(x_i | \nu)$$

$$\uparrow$$
likelihood function normalized reduced width