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Level densities

Level densities are important input in the Hauser-Feshbach theory of
compound nuclear reactions, but are not always accessible to direct
measurement.

The calculation of level densities in the presence of correlations is a
challenging many-body problem.

« Most approaches are based on empirical modifications of the Fermi gas
formula or on mean-field approximations that can often miss important
correlations.

» The configuration-interaction (Cl) shell model accounts for correlations but
diagonalization methods are limited to spaces of dimensionality ~ 10™.

The shell model Monte Carlo (SMMC method) enables microscopic
calculations in spaces that are many orders of magnitude larger (~ 103°)
than those that can be treated by conventional methods.



The shell model Monte Carlo (SMMC) method

Gibbs ensemble ¢ ”” at temperature T (8=1/T) can be written as a
superposition of ensembles U _ of non-interacting nucleons moving in

T e o (r
time-dependent fields o (7) e‘ﬁsz.D[G] GU.

« The integrand reduces to matrix algebra in the single-particle space (of
typical dimension 50 — 100).
« The high-dimensional O integration is evaluated by Monte Carlo methods

Lang, Johnson, Koonin, Ormand, Phys. Rev. C 48, 1518 (1993);
Alhassid, Dean, Koonin, Lang, Ormand, Phys. Rev. Lett. 72, 613 (1994).

Level density in SMMC  [H. Nakada and Y.A., PRL 79, 2939 (1997)]

+ Calculate the canonical thermal energy E()=(H) versus 3 and
integrate — dInZ /93 = E(B) to find the canonical partition function Z(f3).

The average level density is found from Z(3)in the saddle-point approximation:
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Collectivity in heavy nuclei in the CI shell model

Heavy nuclei exhibit various types of collectivity (vibrational, rotational, ... )
that are well described by empirical models.

However, a microscopic description in a Cl shell model has been mostly
lacking.

Can we describe vibrational and rotational collectivity in heavy nuclei
using a spherical shell model approach in a truncated space ?

The large model space required (e.g., ~ 102°in 1%2Dy) necessitates the use

of SMMC.

The various types of collectivity are usually identified by their corresponding
spectra, but SMMC does not provide detailed spectroscopy.



The behavior of (f) versus T is sensitive to the type of collectivity:
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Alhassid, Fang, Nakada, PRL 101 (2008) Ozen, Alhassid, Nakada, PRL 110 (2013)

Single-particle model space (using Woods-Saxon plus spin-orbit)

protons: 50-82 shell plus 1f;,, ; neutrons: 82-126 shell plus 0h,,, and 1gg,.



Crossover from vibrational to rotational collectivity in heavy nuclei
C. Ozen, Y. Alhassid, H. Nakada, Phys. Rev. Lett. 110, 042502 (2013)
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where £, are the experimentally known levels. ZaJ(2J+1)

« Add the contribution of higher levels using the experimental level
density to get an experimental values at higher T.

SMMC describes well the crossover from vibrational to rotational
collectivity in good agreement with the experimental data at low T.
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Level densities in even samarium and neodymium isotopes
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« Good agreement of SMMC densities with various experimental data sets
(level counting, neutron resonance data when available).



Level densities in odd samarium and neodymium isotopes
C. Ozen, Y. Alhassid, H. Nakada, PRC 91, 034329 (2015)

« The projection on odd number of particles introduces a sign problem:
it is difficult to determine an accurate ground-state energy E,.

We extracted E, by a fit to the experimental thermal energy E,(T)

Level counting nresonance SMMC




Mean-field approximations
Y. Alhassid, G.F. Bertsch, C.N. Gilbreth and H. Nakada (in preparation)

A spherical nucleus with strong
pairing (“**Sm ): Hartree-Fock-
Bogoliubov (HFB) vs. SMMC

A deformed nucleus (‘”Dy ):
Hartree-Fock (HF) vs. SMMC
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Particle-number projection is carried out in the saddle-point approximation
-- a good approximation in HF but not in HFB (which does not conserve
particle number).

The enhancement of the SMMC density in a deformed nucleus (compared
with HF) is due to rotational bands built on top of the intrinsic bandheads.



Nuclear deformation in a spherical shell model approach
Y. Alhassid, C.N. Gilbreth, and G.F. Bertsch, Phys. Rev. Lett. 113, 262503 (2014)

Modeling of fission requires level density as a function of deformation.

« Deformation is a key concept in understanding heavy nuclei but it is based
on a mean-field approximation that breaks rotational invariance.

The challenge is to study nuclear deformation in a framework that
preserves rotational invariance.

We calculated the distribution of the axial mass quadrupole in the lab frame
using an exact projection on Q,, (novelinthat [Q,,,H]#0).
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Application to heavy nuclei
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Intrinsic deformation from lab frame distributions

« |nformation on intrinsic deformation can be obtained from the expectation
values of rotationally invariant combinations of the quadrupole tensor QZ#

Example: the lowest order invariant is second order (Q - Q)
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The sharp shape transition in HFB is washed out in the finite-size nucleus

An effective value of ¥ can be determined from the cubic moment of 0,
cos3y =—7/2((0% Q) 0)/{0-0)™"

« The quadrupole invariants can be calculated from lab frame moments of O,,



Intrinsic shape distributions P.(3,7)

InP.(B,y) at a given temperature T is an invariant and can be expanded in
the quadrupole invariants —InP,=AB” — B3’ cos3y +C* +...

« The expansion coefficients A,B,C,... can be determined from the
expectation values of the invariants, which in turn can be calculated
from the low-order moments of ¢,, = ¢

T =4.00 MeV

T=1.19 MeV s T=0.25MeV

}154Sm

-0.3 0

* Mimics a shape transition from a deformed to a spherical shape
without using a mean-field approximation !



Expressing the invariants in terms of ¢, in the lab frame and integrating
over the 1 # 0 components, we recover Plq,,] in the lab frame.
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We find excellent agreement with P[q,,] calculated in SMMC !

A promising method for calculating level densities vs. deformation:

Construct the joint level density distribution p(B.Y,.E,) = p(E)P; (B,Y)
where P_ (f3,y) is the intrinsic shape distribution at given excitation energy E,



Conclusion

« SMMC is a powerful method for the microscopic calculation of level densities
in very large model spaces; recent applications in nuclei as heavy as the
lanthanides.

» Microscopic description of collectivity in heavy nuclei.

* Spin distributions in even-even heavy nuclei: odd-even staggering at low
excitation energies; spin cutoff model at higher excitations.

* Description of nuclear deformation in a rotationally invariant framework (CI
shell model).

Prospects

« Other mass regions (actinides, unstable nuclei,...).

* Level densities as a function of deformation (useful for modeling of fission).



