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Introduction

Shell model Monte Carlo (SMMC) method: heavy nuclei

Nuclear deformation in the spherical shell model: quadrupole distributions
in the laboratory frame

Model-independent signatures of quantum and thermal shape transitions

Quadrupole distributions and level densities vs. intrinsic deformation in the
shell model - without using a mean-field approximation!

Conclusion and outlook

Recent review of SMMC: Y. Alhassid, arXiv:1607.01870, in a book edited by
K.D. Launey (2017)



Introduction

Most microscopic treatments of heavy nuclei are based on mean-field
methods, e.g., density function theory.

However, important correlations can be missed.

The configuration-interaction (Cl) shell model is a suitable framework to
account for correlations but the combinatorial increase of the dimensionality
of its model space has hindered its applications in heavy nuclei.

« Conventional diagonalization methods for the shell model are limited to
spaces of dimensionality ~ 10",

The shell model Monte Carlo (SMMC) enables microscopic calculations in
spaces that are many orders of magnitude larger than those that can be
treated by conventional methods (~ 10%°in heavy nuclei) .



The shell model Monte Carlo (SMMC) method
Start from a configuration-interaction (Cl) shell model Hamiltonian H

Gibbs ensemble ef?H at temperature T (8=1/T) can be written as a
superposition of ensembles U _ of non-interacting nucleons moving in
time-dependent fields o (7)

o BH — JD[G] G U  (Hubbard-Stratonovich
o o transformation)

* The integrand reduces to matrix algebra in the single-particle space (of
typical dimension ~ 100).

« The high-dimensional o integration is evaluated by Monte Carlo methods.

Heavy nuclei (lanthanides) in SMMC
Cl shell model space:

protons: 50-82 shell plus 1f;, ; neutrons: 82-126 shell plus 0h4,,, and 1gg,
Single-particle Hamiltonian: from Woods-Saxon potential plus spin-orbit

Interaction: pairing plus multipole-multipole interaction terms — quadrupole,
octupole, and hexadecupole (dominant components of effective interactions)



SMMC describes well the crossover from vibrational to rotational collectivity
in the framework of the spherical Cl shell model.

The dependence of <}2> on temperature T is sensitive to the type of collectivity
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Nuclear deformation in the spherical shell model:
quadrupole distributions in the laboratory frame

Alhassid, Gilbreth, Bertsch, PRL 113, 262503 (2014)

Modeling of shape dynamics, e.g., fission, requires level density as a
function of deformation.

Deformation is a key concept in understanding heavy nuclei but it is based
on a mean-field approximation that breaks rotational invariance.

The challenge is to study nuclear deformation in a framework that
preserves rotational invariance (e.g., in the Cl shell model) without resorting
to mean-field approximations.

We calculated the distribution of the axial mass quadrupole O,,in the lab
frame using an exact projection on Q,, (novel in that [Q, ,H]+#0).
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Application to heavy nuclei
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At low temperatures, the distribution is similar to that of a prolate rigid rotor
— a model-independent signature of deformation.
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The distribution is close to a Gaussian even at low temperatures.



Model-independent signatures of quantum and thermal shape transitions
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Quadrupole shape distributions P(q, ) in a family of samarium isotopes vs.

neutron number and temperature
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Quadrupole distributions P.(,y) vs. intrinsic deformation
Alhassid, Mustonen, Gilbreth, Bertsch

Information on intrinsic deformation 3,y can be obtained from the expectation
values of rotationally invariant combinations of the quadrupole tensor ¢,,,.

3 invariants to 4t order: g - g o< ﬁz; (gXq)-q o< ,33 cos(3y); (g Q)z o< ,34

InP.(B,y) ata giventemperature T is an invariant and can be expanded in
the quadrupole invariants [a Landau-like expansion, used for the free energy
to describe shape transitions in Alhassid, Levit, Zingman, PRL 57, 539 (1986)]

—~InP.=af* +bB’ cos3y +cB* +...

The expansion coefficients a,b,c... can be determined from the
expectation values of the invariants, which in turn can be calculated
from the low-order moments of ¢g,, = ¢q in the lab frame.

7 35
<q-q>=5<q,, >; <(q><q)-q>:—5\/;<q§0 > <(q-q) >=?<q§0 >



Expressing the invariants in terms of g, in the lab frame and integrating
over the 11 z 0 components, we recover P(q,,) in the lab frame.

T =4.00 MeV T=1.19 MeV T=0.10 MeV
154 | | | | | | ‘
L Sm 1 1 SMMC °
0.0015 expansion
= 0001 ¢
~
0.0005 ¢
0

~1000 0 1000 -1000 0 1000 -1000 0 1000
2 2 2
q (fm™) q (fm”) q (fm™)

We find excellent agreement with P(q,,) calculated in SMMC !
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* Mimics a shape transition from a deformed to a spherical shape
without using a mean-field approximation !



Shape distributions P in the intrinsic [,y variables

148Sm 15OSm 152Sm 154Sm

(\“/%

transition vs.
temperature
(or excitation

energy)

Quantum shape transition (at T=0) vs. neutron number



(Q-Q) as a function of temperature T for the family of samarium isotopes:
SMMC vs. mean-field theory [Hartree-Fock-Bogoliubov (HFB)]
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The sharp kink characterizing the HFB shape transition is washed out
as is expected in a finite-size system.

A signature of this phase transition remains in the rapid decrease of
(Q-Q) with temperature.

In SMMC deformation effects survive well above the transition
temperature: (Q-Q) continues to be enhanced above its mean-field value.



We divide the 3,y plane into three regions:
spherical, prolate and oblate.

Integrate over each deformation region to determine
the probability of shapes versus temperature using

the appropriate metric

I1,da,, > B*|sin(3y)ldBdy
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« Compare deformed ('°*Sm), transitional (1°°Sm) and spherical ('8Sm) nuclei
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Level density versus intrinsic deformation

 Use the saddle-point approximation to convert P( 3,y) to
level densities vs. E,, 3,y (canonical = micro canonical)
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In strongly deformed nuclei, the contributions from prolate shapes dominate
the level density below the shape transition energy.

In spherical nuclei, both spherical and prolate shapes make significant
contributions.



Conclusion

« SMMC is a powerful method for the microscopic calculation of collective and
statistical nuclear properties in very large model spaces; applications in nuclei
as heavy as the lanthanides.

* The mass quadrupole distribution in the laboratory frame is a model-
independent signature of deformation.

» Quadrupole distributions in the intrinsic frame can be determined in a
rotationally invariant framework (the CI shell model) - describe quantum and
thermal shape transitions without using a mean-field approximation.

* Deformation-dependent level densities can now be calculated in SMMC
Outlook

» Generalize to other shapes (e.g., octupole)

* Method can be applied to calculate exact shape distributions in other nuclear
models.

» Applications to shape dynamics



