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Nuclear deformation in the laboratory and intrinsic frames

• Introduction

• Shell model Monte Carlo (SMMC) method: heavy nuclei

• Nuclear deformation in the spherical shell model: quadrupole distributions
in the laboratory frame

• Model-independent signatures of quantum and thermal shape transitions

• Quadrupole distributions and level densities vs. intrinsic deformation in the
shell model - without using a mean-field approximation!

• Conclusion and outlook

Recent review of SMMC: Y. Alhassid, arXiv:1607.01870, in a book edited by 
K.D. Launey (2017)



Introduction

The configuration-interaction (CI) shell model is a suitable framework to 
account for correlations but the combinatorial increase of the dimensionality
of its model space has hindered its applications in heavy nuclei.

• Conventional diagonalization methods for the shell model are limited to
spaces of dimensionality ~ 1011.

The shell model Monte Carlo (SMMC) enables microscopic calculations in 
spaces that are many orders of magnitude larger than those that can be 
treated by conventional methods (~ 1030 in heavy nuclei) .

Most microscopic treatments of heavy nuclei are based on mean-field 
methods, e.g., density function theory.

However, important correlations can be missed.



The shell model Monte Carlo (SMMC) method

  
e−βH = D σ⎡⎣ ⎤⎦∫  GσUσ

 e−βH

Start from a configuration-interaction (CI) shell model Hamiltonian 	H

Single-particle Hamiltonian:  from Woods-Saxon potential plus spin-orbit 

Heavy nuclei (lanthanides) in SMMC
CI shell model space:

protons: 50-82 shell plus 1f7/2 ; neutrons: 82-126 shell plus 0h11/2 and 1g9/2

Interaction: pairing plus multipole-multipole interaction terms – quadrupole, 
octupole, and hexadecupole (dominant components of effective interactions)

Gibbs ensemble           at temperature T can be written as a 
superposition of ensembles       of non-interacting nucleons moving in 
time-dependent fields

 e−βH

Us
( )s t

(β = 1/T )

• The integrand reduces to matrix algebra in the single-particle space (of  
typical dimension ~ 100).

• The high-dimensional       integration is evaluated by Monte Carlo methods.s

(Hubbard-Stratonovich
transformation)



SMMC describes well the crossover from vibrational to rotational collectivity 
in the framework of the spherical CI shell model.

Ozen, Alhassid, Nakada, PRL 110, 042502 (2013)

The dependence of        on temperature T is sensitive to the type of collectivity    〈J
!"2

〉
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• Deformation is a key concept in understanding heavy nuclei but it is based
on a mean-field approximation that breaks rotational invariance. 

Modeling of shape dynamics, e.g., fission, requires level density as a 
function of deformation.

The challenge is to study nuclear deformation in a framework that 
preserves rotational invariance (e.g., in the CI shell model) without resorting 
to mean-field approximations.

We calculated the distribution of the axial mass quadrupole       in the lab
frame using an exact projection on        (novel in that                     ).[Q20,H ]≠ 0Q20

Alhassid, Gilbreth, Bertsch, PRL 113, 262503 (2014)

Pβ (q) = 〈δ (Q20 − q)〉 =
1

Tr e−βH
dϕ
2π e

− iϕ qTr
−∞

∞

∫ (eiϕQ20e−βH )

Nuclear deformation in the spherical shell model:
quadrupole distributions in the laboratory frame

Q20



Application to heavy nuclei

(deformed)  

• At low temperatures, the distribution is similar to that of a prolate rigid rotor 
a model-independent signature of deformation.

154Sm

(spherical)  

148Sm

• The distribution is close to a Gaussian even at low temperatures.

Rigid rotor

⇒
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Model-independent signatures of quantum and thermal shape transitions



at a given temperature     is an invariant and can be expanded in
the quadrupole invariants [a Landau-like expansion, used for the free energy
to describe shape transitions in Alhassid, Levit, Zingman, PRL 57, 539 (1986)] 

• The expansion coefficients a,b,c… can be determined from the 
expectation values of the invariants, which in turn can be calculated 
from the low-order moments of              in the lab frame.  q20 = q

Quadrupole distributions               vs. intrinsic deformation

Information on intrinsic deformation        can be obtained from the expectation 
values of rotationally invariant combinations of the quadrupole tensor        .   q2µ

β,γ

PT (β,γ )

− lnPT =aβ
2 + bβ 3 cos3γ + cβ 4 + ...

lnPT (β,γ )

Alhassid, Mustonen, Gilbreth, Bertsch

q ⋅q ∝β 2 (q × q) ⋅q ∝β 3 cos(3γ ) (q ⋅q)2 ∝β 43 invariants to 4th order:                 ;                                          ;                              

		
<q ⋅q>=5<q202 >; <(q×q)⋅q>= −5 7

2 <q20
3 >; <(q ⋅q)2 >= 353 <q20

4 >

	T



Expressing the invariants in terms of         in the lab frame and integrating
over the          components, we recover             in the lab frame.

q2µ
µ ≠ 0 P (q20 )

We find excellent agreement with            calculated in SMMC !P (q20 )
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• Mimics a shape transition from a deformed to a spherical shape
without using a mean-field approximation !
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		− lnP(β ,γ )
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Quantum shape transition (at T=0) vs. neutron number
	N→

Thermal 
shape
transition vs.
temperature
(or excitation
energy)
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Shape distributions      in the intrinsic          variables β,γ	PT



0

4

8

12

 1  2  3

148
Sm

<
Q

⋅
Q

>
 (

1
0

5
 f

m
4
)

T (MeV)

 0  1  2  3

150
Sm

T (MeV)

 0  1  2  3

152
Sm

T (MeV)

 0  1  2  3  4

154
Sm

T (MeV)

as a function of temperature     for the family of samarium isotopes:
SMMC vs. mean-field theory [Hartree-Fock-Bogoliubov (HFB)]
	〈Q ⋅Q〉 	T

• A signature of this phase transition remains in the rapid decrease of 
with temperature.	〈Q ⋅Q〉

SMMC

↵

↵
HFB

• The sharp kink characterizing the HFB shape transition is washed out 
as is expected in a finite-size system.

• In SMMC deformation effects survive well above the transition 
temperature:           continues to be enhanced above its mean-field value. 	〈Q ⋅Q〉



We divide the         plane into three regions:
spherical, prolate and oblate.

Integrate over each deformation region to determine
the probability of shapes versus temperature using
the appropriate metric 

β,γ

• Compare deformed (154Sm), transitional (150Sm) and spherical (148Sm) nuclei
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Level density versus intrinsic deformation 
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• Use the saddle-point approximation to convert PT(       ) to 
level densities vs. Ex,        (canonical     micro canonical)

β,γ
β,γ

Deformed Transitional Spherical

Ex (MeV)

⇒

In strongly deformed nuclei, the contributions from prolate shapes dominate 
the level density below the shape transition energy.

In spherical nuclei, both spherical and prolate shapes make significant
contributions.



Conclusion
• SMMC is a powerful method for the microscopic calculation of collective and  
statistical nuclear properties in very large model spaces; applications in nuclei 
as heavy as the lanthanides.

• The mass quadrupole distribution in the laboratory frame is a model-
independent signature of deformation.

• Quadrupole distributions in the intrinsic frame can be determined in a 
rotationally invariant framework (the CI shell model) - describe quantum and 
thermal shape transitions without using a mean-field approximation.

• Deformation-dependent level densities can now be calculated in SMMC

• Generalize to other shapes (e.g., octupole)

• Method can be applied to calculate exact shape distributions in other nuclear
models.

• Applications to shape dynamics

Outlook


