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•  Introduction 
 
•     Superconducting metallic grains (nanoparticles):  
      BCS (bulk) regime and fluctuation-dominated regime. 
 
(I)  Nanoparticles without spin-orbit scattering 
       Competition between pairing (superconductivity) and spin exchange 
        correlations (ferromagnetism). 

(II)   Nanoparticles with spin-orbit scattering 
     Response to an external magnetic field:  g-factor and level curvature 
    
•   Effects of pairing correlations on the g-factor and level curvature statistics. 
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•  Quantum phase diagram 
•  Transport 
•   Thermodynamics.  



Introduction: ultra-small metallic grains (nanoparticles) 

•   Discrete energy levels extracted from non-linear 
conductance measurements (Ralph et al). 

•   Experiments on Al, Co, Au, Cu, and Ag grains. 

(     = single-particle level spacing) δ

Superconducting grains  

Consider materials that are superconductors in the bulk and 
characterized by a pairing gap    .	
Δ

T << δ
•  Ultra-small (nano-scale) grains:  
      probe the quantum regime   



(i)  Large Al grains (~ 10 nm)                  Δ≫ δ

•  The Bardeen-Cooper-Schrieffer (BCS) theory is valid (BCS regime) 

The pairing gap 
is directly observed in 
the spectra of such  
grains with even  
number of electrons. 

(ii)  Small Al grains (~ 1 nm)   δΔ≤

•  BCS theory breaks down.  
     “Superconductivity would no longer be possible” (Anderson)  

A mesoscopic regime dominated by large fluctuations of the pairing gap  
(fluctuation-dominated regime). 

Do signatures of pairing correlations survive the large fluctuations ? 

For a review, see J. von Delft and D.C. Ralph, Phys. Rep 345, 61  (2001). 



(I) Superconducting nanoparticles without spin-orbit scattering 

An isolated chaotic grain with a large number of electrons is described by 
the universal Hamiltonian [Kurland, Aleiner, Altshuler, PRB 62, 14886 (2000) ] 

H = Σ
i
ε i (ai↑

† ai↑ + ai↓
† ai↓ ) +

e2

2C
N 2 −GP†P − Js

!
S 2

•  Ferromagnetic exchange interaction (     is the total spin of the grain) 
with exchange constant            . 

S
!"

•  Discrete single-particle levels       (spin degenerate) and wave functions follow 
random matrix theory (RMT). 

P† = ai↑
† ai↓

†

i
∑•  Attractive BCS-like pairing interaction (                            is  the pair     

operator ) with coupling           . 0G >

0sJ >

ε i

 Competition between pairing and exchange correlations: pairing favors 
 minimal ground-state spin, while exchange favors maximal spin polarization. 

•  Corrections                  are small for large Thouless conductance g.  ~O(1 / g)



A derivation from symmetry principles 
[Y. A., H.A. Weidemuller, A. Wobst, PRB 72, 045318 (2005)] 
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•  The randomness of the single-particle wave functions induces 
randomness in the two-body interaction matrix elements. 

•  Cumulants of the interaction matrix elements are determined by requiring 
invariance under a change of the single-particle basis (single-particle 
dynamics are chaotic). 

Averages: There are three (two) invariants in the orthogonal (unitary) 
symmetry: 

; 0v v sJ Gαβ γδ αγ βδ αδ βγ αβ γδδ δ δ δ δ δ= + −
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where v is the (screened) Coulomb interaction 



The eigenstates                              factorizes into two parts: | ;B SU Mς γ >

(i)               are zero-spin eigenstates of the reduced BCS Hamiltonian  

U

|Uς >

| B SMγ >
!
S 2

Eigenstates of the universal Hamiltonian: 

(ii)                         are eigenstates of        , obtained by coupling spin-1/2  
singly-occupied levels in      to total spin     and spin projection      . 

Singly occupied  
levels (red) are  
blocked with 
respect to pairing 

B S M

      is a subset of doubly occupied and empty levels. 
      is a subset of singly occupied levels B

Exact solution: Richardson’s solution for the reduced BCS plus spin algebra. 
For a review, see J. Dukelsky, S. Pittel, and G. Sierra, Rev. Mod. Phys. 76, 643 (2004)   



                      

Ground-state spin in the 
plane (for an equally spaced single-
particle spectrum) 

/ /sJ δ δ−Δ

•  Mean-field approximation (S-dependent BCS) fails to reproduce coexistence. 

Exact solution: coexistence of superconductivity and ferromagnetism 
 in the fluctuation-dominated regime.  

Reviewed in Y.A., K. Nesterov and S. Schmidt, 
 Phys. Scr. T 151, 014047  (2012)  

Quantum phase diagram 

Bulk limit 
(BCS) 

 Z. Ying et al, Phys. Rev. B 74, 012503 (2006) 
 S. Schmidt, Y.A., K. van Houcke, Europhys. Lett.,80, 47004  (2007) 



Peak height Gmax 

•  A conductance peak is observed for each electron that tunnels into the dot 

⇒

•   Single-particle energies and wave  
functions are described by RMT       

⇓
 Mesoscopic fluctuations of Gmax 
 and  

   Transport: Coulomb blockade conductance 

Δ2



S=1 

(i)  The electron tunnels into an empty level     and blocks it λ
In sequential tunneling, there are two classes of transport processes: 

[S. Schmidt and Y.A, PRL 101, 207003 (2008)] 
Conductance in a metallic grain 

Before tunneling: 



S=3/2 

After tunneling: 



(ii) The electron tunnels into a singly occupied level     and unblocks it λ

S=1 

Before tunneling: 



After tunneling: 

S=1/2 



Mesoscopic fluctuations of the conductance peaks 

    Peak-spacing statistics (               ) 

Peak-spacing distributions 

•  Exchange suppresses bimodality while pairing enhances it. 

Single-particle energies and wave functions described by random matrix 
statistics (GOE). 

0.1T δ=



     Peak-height statistics  (               ) 

Peak-height distributions 

•   Exchange interaction suppresses the peak-height  fluctuations. 

Mesoscopic signatures of coexistence of pairing and exchange correlations 
 for                    and                   : bimodality of peak spacing distribution 
 (pairing) and suppression of peak height fluctuations (exchange). 

/ 0.5δΔ = / 0.6sJ δ =

Peak height fluctuation width 

0.1T δ=



   Thermodynamics 

A finite-temperature method: 

K. Nesterov and Y.A., PRB 87, 014515 (2013) 

Tre−βH   = eβJsS (S+1)TrSS∑ e−βHBCS

1(2 1)( )
z zS S S S STr X S Tr X Tr X= = += + −

Richardson’s solution becomes impractical at higher temperatures. 

H = Σ
i
ε i (ai↑

† ai↑ + ai↓
† ai↓ ) −GP

†P − Js
!
S 2 = HBCS − Js

!
S 2

(i) Exact spin projection method 

Trace over states with fixed spin S 

Reduced pairing Hamiltonian 

Trace with fixed spin component            (calculated by Fourier transform)  Sz

See Y.A., Liu and Nakada, PRL 99, 162504 (2007). 
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(ii) Functional integral representation (Hubbard-Stratonovich) for the reduced 
      pairing Hamiltonian          : 

(iii) Number-parity projection to capture odd-even effects.  

Integrate over        exactly (static path approximation) and over        by saddle 
point [i.e., random phase approximation (RPA)] around each static  

0Δ

BCSH

one-body Hamiltonian in pairing field ( )τΔ

Δ(τ ) = Δ0 + Δme
iωmτ

m
∑

 Δm

0Δ

Pη = (1+ηe
iπN ) / 2

describes a projection on even (odd) number of particles η = 1(η = −1)

Expand 

(      are Matsubara frequencies). ωm

See also R. Rossignoli, N. Canosa and P. Ring, Phys. Rev. Lett. 80, 1853 (1998); 
G. Falci, A. Fubini, and A. Mastellone, Phys. Rev. B 65, 140507 (2002).  



Comparison with exact results for particular realizations of the 
 single-particle spectrum 

•  The static path + RPA+number-parity projection is an accurate method 
     yet very efficient. 

Heat capacity Spin susceptibilty 

odd 



Heat capacity 

Fluctuation-dominated regime: exchange correlations suppress the odd-
even signatures of pairing correlations. 

BCS regime: exchange correlations enhance the S-shoulder in the even case.  

Heat capacity 
 in nuclei 



Spin susceptibility 

•   Fluctuation-dominated regime: exchange correlations enhance 
    the fluctuations of the susceptibility. 
•  BCS regime: exchange correlations enhance re-entrant effect. 

Spin susceptibility
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The exchange interaction enhances the mesoscopic fluctuations



(II) Superconducting nanoparticles with spin-orbit scattering 

Spin-orbit scattering breaks spin symmetry but preserves time-reversal.  
 
The exchange interaction is suppressed but the pairing interaction remains 
unaffected.  

We studied the response of energy levels in the nanoparticle to external  
magnetic field B: linear (g factor) and quadratic (level curvature) terms.  

In the absence of pairing correlations, the single-particle levels are given by  

K. Nesterov and Y.A. (2014) 

[Brouwer, Waintal and Halperin (2000); Matveev, Glazman and Larkin (2000)]  

•  Without spin orbit scattering, spin is a good quantum number and g=2. 
 
•  With spin-orbit scattering, spin is no longer conserved. The g factor is 
     suppressed (g<2) and exhibits level-to-level fluctuations.  
     In general, g has a tensor structure. 
     The statistical distribution of the g factor was studied using random matrix 
     theory. 

ε i ±
1
2
gµBB + 1

2
κB2 + ...



•  Recent advances (use of organic substrates) are providing much better 
  control over the size and shape the metallic grain. 

•  Level and g-factor statistics in a gold grain are in agreement with the 
 symplectic ensemble of RMT  (Ralph et al, 2008). 



g factor and level curvature in the presence of interactions  

We assume a one-bottleneck geometry: decay into the ground 
state before another electron is added. 

dI/dV curves in tunneling spectroscopy experiments measure the energy 
differences         between many-particle states with N+1 and N electrons 

For tunneling into the even ground state ΔEΩ = EΩ
N+1 − E0

N

Many-body levels of the odd nanoparticle are doubly degenerate (Kramers’ 
degeneracy), and they split in a magnetic field 

ΔE = ΔE(0)± 1
2
gµBB + 1

2
κB2 + ...

g and           reduce to the single-particle level quantities in the  
constant-interaction model. 

ΔEΩ

κ



H = Σ
i,α
ε iaiα

† aiα −GP
†P − BMz

Universal Hamiltonian with strong spin-orbit scattering 

where α  =1,2 is the Kramers doublet with energy       and  P† = ai1
†ai2

†

i
∑

Even ground state 

Odd state 

blocked orbital 

ε i



For the even ground state: 

by time-reversal symmetry 
(       is odd under time reversal) 

For the odd state: 

since                                  by time-reversal symmetry  

The many-particle g factor reduces to the single-particle g factor of 
the  odd-particle blocked orbital k0.  

g-factor distributions are not affected by pairing correlations. 

g-factor (linear correction) 

Mm1,m1
z +Mm2,m2

z = 0

〈0 |Mz | 0〉 = 0
Mz

〈Ω |Mz |Ω '〉 = Mk0α ,k0α '
z



Level curvature κ (quadratic correction) 

In second-order perturbation theory (even ground state to odd ground state) 

In the non-interacting case, κ reduces to the single-level curvature 

The single-level curvature distribution 
 is symmetric around            . 

Level curvatures: tunneling between ground states

ENe+1
0 (B)− ENe

0 (B) = const.± 1
2gµBB + 1

2κB
2 + . . .

κ =
′∑

Ω′

∣∣∣
〈
Ω′

∣∣M̂z

∣∣0
〉
Ne+1

∣∣∣
2

ENe+1
0 − ENe+1

Ω′

−
′∑

Θ′

∣∣∣
〈
Θ′

∣∣M̂z

∣∣0
〉
Ne

∣∣∣
2

ENe
0 − ENe

Θ′

= κodd
0 − κeven

0

Noninteracting limit:
κ reduces to the single-particle curvature

κk = 2
∑

k′ ̸=k

|Mz
k1,k′1|2 + |Mz

k1,k′2|2

ϵk − ϵk′
�� �� �� � � � ��

���

���

���

���

���

Left tail:
|ϵk − ϵk+1| ≪ δ
|ENe+1

0 − ENe+1
Ω′ | ≪ δ

Right tail:
|ϵk − ϵk−1| ≪ δ
|ENe

0 − ENe
Θ′ | ≪ δ

Pairing interaction with ∆/δ > 1:
Negative contribution

- |ENe+1
0 − ENe+1

Ω′ | can be small
-enhanced

Positive contribution

- |ENe
0 − ENe

Θ′ | ! 2∆
- suppressed

κ = 0

κ =
| 〈Ω ' |Mz | 0〉N+1 |

2

E0
N+1 − EΩ '

N+1 −
Ω '≠0
∑ | 〈Θ ' |Mz | 0〉N |

2

E0
N − EΘ '

N
Θ '≠0
∑



Results for the many-particle level curvature distributions 

•  Single-particle levels follow the Gaussian symplectic ensemble (GSE). 

•  Exact CI calculation versus a generalized BCS approach. 

Similar qualitative behavior is observed 
 in the the exact results and in the BCS 
 approximation: the curvature distribution 
 is asymmetric and shifted towards  
negative values. 

Many-particle level curvature  
distribution is highly sensitive 
to pairing correlations (even in 
the fluctuation-dominated regime)   

Can be used as a tool to probe pairing correlations in the single-electron 
tunneling spectroscopy experiments. 

Magnetic-field dependence of energy levels of superconducting
nanoparticles with spin-orbit scattering
Konstantin Nesterov1,2 and Yoram Alhassid1

1Yale University, USA 2Present a�liation: SPSMS, UMR-E 9001 CEA/UJF-Grenoble 1, INAC, Grenoble, France
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We study the response of discrete energy levels of ultrasmall metallic grains to an external magnetic field in the presence of both spin-orbit scattering
and superconducting correlations. We concentrate on the linear and quadratic in magnetic field corrections to energies, which are parametrized,
respectively, by g-factors and level curvatures. Both corrections fluctuate from level to level in the presence of spin-orbit scattering. We show that
the distribution of fluctuating g-factors is not a↵ected by pairing correlations, while the distribution of level curvatures is sensitive to them even in
the smallest grains, in which the mean single-particle level spacing is greater than the pairing gap. Therefore, level curvatures are a good tool to
detect pairing correlations in tunneling spectroscopy experiments.

Ultrasmall metallic grains

Single-electron-tunneling spectroscopy since mid-90s:

D.C. Ralph, C.T. Black, and M. Tinkham (1997)

discrete levels

IMeasurement of discrete energy levels
I Large mean single-particle level spacing: � ⇠ 0.02� 0.3 meV
I Experiments on Al, Co, Al+Au, Au, Cu, Ag particles
IRecent advances: high-quality spectra of Au particles
(D.C.Ralph’s group, 2008)

Chaotic grains:

IAssume the classical single-particle dynamics
are chaotic

I Statistical approach
IMesoscopic fluctuations
I Single-particle spectrum is described by
random matrix theory (RMT)

Splitting of single-electron levels:

Theory: P.W. Brouwer, X. Waintal, B.I. Halperin (2000)

and K.A. Matveev, L.I. Glazman, A.I. Larkin (2000)

Kramers degeneracy of single-electron levels ✏i is lifted by a magnetic
field:

No spin-orbit scattering

0

Spin is a good quantum number

0

Spin-orbit scattering

Spin is not a good quantum number

RMT-based models have good agreement with experiment (noble
metals)

What happens in the presence of interactions?

Generic interaction: universal Hamiltonian

I.L. Kurland, I.L. Aleiner, B.L. Altshuler (2000)

I.L. Aleiner, P.W. Brouwer, L.I. Glazman (2002)

Valid in the limit gTh = ETh/� � 1 (ETh is the Thouless energy)
Describes a generic chaotic or weakly disordered system at low
energies

average interaction (universal) fluctuating part

our model 
(for fixed particle number)

↵ = 1, 2 are degenerate single-particle orbitals related by time reversal

Superconducting grains

IMaterial is superconducting in the bulk
I Characterized by the bulk pairing gap �

Many-electron spectrum for even electron number:

I�/� ⇡ # of pair-correlated single-electron levels
IWhat happens to pairing correlations when � > �?

10
nanoparticles

Definitions

How to define g-factor and level curvature in the
presence of interactions?

Tunneling spectroscopy experiments:
Each peak in dI/dV (V ) corresponds to a transition |⇥iN ! |⇥0iN 0

between two many-electron states with di↵erent particle numbers
|N �N 0| = 1. The di↵erence EN 0

⇥0 � EN
⇥ between many-electron

energies of these states is extracted from the peak position.

Constant-interaction model:

- interaction is given by EC(N̂ �N0)2

- possible |⇥iN and |⇥0iN 0 di↵er by the
occupation of one single-particle
orbital k
- �E = EN 0

⇥0 � EN
⇥ = ✏k + const.

- �E(B) = �E(0)± 1
2gkµBB + 1

2kB2 +O(B3)
- single-particle quantities are measured

One-bottleneck geometry:

so
ur
ce

dr
aingrain

Tunneling onto an even ground state |0iNe:

�E⌦,0 = ENe+1
⌦ � ENe

0

General definition of g-factor g and level curvature :

�E⌦,0(B) = �E⌦,0(0)±
1

2
gµBB +

1

2
B2 +O(B3)

g and  reduce to single-particle quantities in the noninteracting case

Exchange interaction: D. Gorokhov, P.Brouwer (2003)
- suppressed when spin-orbit scattering is strong
- only pairing correlations survive

Eigenstates of the pairing model

Ĥ =
X

i,↵=1,2

✏ia
†
i↵ai↵ �GP̂ †P̂ (�BM̂z )

|0iNe ! |⌦iNe+1 , �E⌦,0 = ENe+1
⌦ � ENe

0

even
ground
state

odd state
after
tunneling

no interaction pairing interaction

nondegenerate

Kramers doublets,
split in a magnetic field

blocked orbital

single-particle energy
is measured in the

noninteracting limit

Selection rule: one singly occupied (blocked) orbital in the odd state
The di↵erence �E⌦,0 splits in a magnetic field because of the singly
occupied orbital in the odd state. However, in general, the
magnetic-field dependence of this di↵erence comes from the
magnetic-field dependence of both ENe

0 and ENe+1
⌦ .

g-factors

Linear corrections to energies ENe
0 and ENe+1

⌦ .
Even ground state:

(because of time-reversal
symmetry)

Odd state:

single-particle ) g = gs�p
k

(because of time-reversal symmetry and the blocking e↵ect)

The measured g-factor reduces to the single-particle g-factor of the
odd-state blocked orbital
) the measured distribution of g-factors is not a↵ected by pairing
correlations
) can be used to probe importance of correlations beyond the
pairing interaction

Level curvatures

Quadratic corrections to energies ENe
0 and ENe+1

⌦ .
Consider tunneling between two ground states
[the first peak in dI/dV (V ) characteristics]

ENe+1
0 (B)� ENe

0 (B) = const.± 1

2
gµBB +

1

2
B2 + . . .

 =
0X

⌦0

���
⌦
⌦0
��M̂z

��0
↵
Ne+1

���
2

ENe+1
0 � ENe+1

⌦0

�
0X

⇥0

���
⌦
⇥0
��M̂z

��0
↵
Ne

���
2

ENe
0 � ENe

⇥0

= odd
0 � even

0 (1)

(second-order perturbation theory)

Noninteracting limit:
 reduces to the single-particle
curvature

k = 2
X

k06=k

|Mz
k1,k01|2 + |Mz

k1,k02|2

✏k � ✏k0

(Mz
k↵,k0↵0 is the single-electron matrix element)

The distribution of  is symmetric with zero average

Left tail:
|✏k � ✏k+1| ⌧ �
|ENe+1

0 � ENe+1
⌦0 | ⌧ �

Right tail:
|✏k � ✏k�1| ⌧ �
|ENe

0 � ENe
⇥0 | ⌧ �

Pairing interaction with �/� > 1:
The denominators in the odd and even contributions in Eq. (1) are
a↵ected di↵erently.

Negative (odd) contribution
- no excitation gap
- |ENe+1

0 � ENe+1
⌦0 | can be small

- enhanced

Positive (even) contribution
- excitation gap
- |ENe

0 � ENe
⇥0 | & 2�

- suppressed

Therefore, pairing correlations are expected to make the distribution
asymmetric and shift it to negative values.

Numerical simulations

I Single-particle eigenenergies and eigenstates follow Gaussian
symplectic ensemble of RMT

IOrbital contribution to magnetization is neglected: M̂z = 2µBŜz

I Exact calculations for small model spaces (up to 13 single-particle
orbitals) because of the significant computational e↵ort

I Calculations based on the generalized variational BCS approach for
larger model spaces (up to 200 single-particle orbitals)
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exact

BCS

∆/δ = 0.0∆/δ = 0.4

∆/δ = 1.0

∆/δ = 3.0

(d0 is the midspread or the middle 50% of the single-particle
distribution)
) Level curvature is highly sensitive to pairing correlations!

Conclusions

I g-factors are independent of the strength of the pairing interaction
I Level curvatures are highly sensitive to pairing correlations even in
the fluctuation-dominated regime (�/� . 1)

I Level curvatures can be used as a practical tool to detect pairing
correlations in a spectroscopy experiment
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•  A superconducting nano-scale metallic grain is characterize by two regimes: 
BCS regime                and fluctuation-dominated regime               .  

(I) In the absence of spin-orbit scattering: 

•  Competition between pairing and spin exchange correlations 

•  Coexistence of superconductivity and ferromagnetism in the fluctuation-
dominated regime 

•  Effects of exchange correlations on the odd-even signatures of pairing 
correlations are qualitatively different in the BCS and fluctuation-dominated 
regimes.  

Δ / δ ≤ 1

Conclusion 

Δ / δ >> 1

(II) In the presence of spin-orbit scattering: 

•  Spin exchange correlations are suppressed. 

•  g-factor statistics are unaffected by pairing correlations. 

•  Level curvature statistic is highly sensitive to pairing correlations 


