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The shell model Monte Carlo (SMMC) method 

The SMMC method enables microscopic calculations in spaces that 
are many orders of magnitude larger (~ 1029). 

•  The configuration-interaction (CI) shell model accounts for correlations but 
diagonalization methods are limited to ~ 1011 configurations. 

•  Most microscopic treatments of heavier nuclei are based on mean-field 
  methods but important correlations can be missed. 

  
e−βH = D σ⎡⎣ ⎤⎦∫  GσUσ

Gibbs ensemble                      can be written as a superposition of          
ensembles       of non-interacting nucleons in time-dependent fields 

( 1/ )He Tβ β− =
Uσ ( )σ τ

•   The integrand reduces to matrix algebra in the single-particle space (of  
typical dimension 50 – 100). 

σ

G.H. Lang, C.W. Johnson, S.E. Koonin, W.E. Ormand, PRC  48, 1518 (1993);  
Y. Alhassid, D.J. Dean, S.E. Koonin, G.H. Lang, W.E. Ormand, PRL 72, 613 (1994). 

•  The high-dimensional integration over      is evaluated by Monte Carlo 
methods. 



Level densities 

•  The average state density is found from             in the saddle-point 
approximation: 
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•   Calculate the thermal energy                        versus       and integrate 
                                            to find the partition function 
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Level density is the most important statistical nuclear property (Fermi’s 
golden rule, Hauser-Feshbach theory of statistical nuclear reactions, etc.), but 
its calculation is a difficult many-body problem in the presence of correlations. 

•  Most approaches are based on empirical modifications of the Fermi gas  
formula or on mean-field approximations 

Level density in the SMMC approach 

S(E) = canonical entropy;           C = canonical heat capacity. 

H. Nakada and Y. Alhassid., PRL 79, 2939 (1997) 



 Applications of SMMC to odd-even and odd-odd nuclei has been hampered by  
a sign problem that originates from the projection on odd number of particles. 
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Circumventing the odd-particle sign problem in SMMC 
A. Mukherjee and Y. Alhassid, Phys. Rev. Lett. 109, 032503 (2012) 

•   A breakthrough was a method we introduced to calculate the ground-state 
   energy of the odd-particle system. 

•  The energy difference between the 
lowest energy of the odd-particle 
system for a given spin j and the 
ground-state energy of the even-
particle system can be extracted from 
the slope of              .  ln ( )Gν τ

( 1)jE A±

Consider the imaginary-time single-particle Green’s functions 
                                         for orbitals  

  Minimize                 to find the ground-
state energy and its spin j. 



Statistical errors of ground-state energy of           
direct SMMC versus Green’s function method 

Pairing gaps in iron region nuclei from odd-even mass differences 

direct SMMC 
Direct SMMC 

Green’s function method 

•  SMMC in the complete fpg9/2 shell (good agreement with experiments) 

Direct SMMC 

Green’s function method 



Application to nickel isotopes: theory versus experiment 

•  Recent determination of level densities in nickel isotopes from proton 
  evaporation spectra  [A. Voinov et al. (Ohio University group) 2012]. 
•  We can now calculate accurate ground-state energies and thus microscopic  
 level densities for both even-even and even-odd isotopes. 

M. Bonett-Matiz, A. Mukherjee and Y. Alhassid, Phys. Rev. C  Rapid Com. 88, 011302 (2013) 

Excellent agreement 
with experiments: 
(i) level counting, 
(ii) p evaporation, 
(iii) neutron 
resonance data. 



Heavy nuclei exhibit various types of collectivity (vibrational, rotational, …  
and their crossovers) that are well described by empirical models. 

However, a microscopic description (e.g., CI shell model) has been lacking. 

Can we describe vibrational and rotational collectivity in heavy nuclei 
 using the framework of the CI shell model ? 

The large model space required (e.g., ~ 1029 in rare-earth nuclei)  
necessitates the use of SMMC. 
 
The various types of collectivity are usually identified by the corresponding 
spectra, but SMMC does not provide detailed spectroscopy.  

Microscopic emergence of collectivity in heavy nuclei 
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SMMC describes well the crossover from vibrational to rotational 
collectivity in good agreement with the experimental data at low  T
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•  Experimental values are found from  
where         are the experimentally known levels. JEα

versus       in samarium isotopes < J
!"2

> T

•   Add the contribution of higher levels using the experimental level 
density to get an experimental values at higher T. 

Crossover from vibrational to rotational collectivity in heavy nuclei 
C. Ozen, Y. Alhassid, H. Nakada, Phys. Rev. Lett. 110, 042502 (2013) 



Level densities in samarium and neodymium isotopes 

•  Excellent agreement of SMMC densities with various experimental data sets. 
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Collective enhancement factor 

•  The damping of vibrational enhancement is correlated with the pairing transition 
  
•  A regime of rotational enhancement up to the shape transition. 
 
•  The damping of rotational enhancement is correlated with the shape transition.  

Collective enhancement factors K are one of the least understood topics 
in level densities and are usually treated empirically. 

We define K as the ratio of the SMMC state density to the 
 Hartree-Fock-Bogoliubov (HFB) intrinsic density. 



Spin distributions in SMMC 

Y. Alhassid, S. Liu and H. Nakada, Phys. Rev. Lett. 99, 162504 (2007)  

        = spin cutoff parameter (increases with excitation energy).   

•  Analysis of experimental data [T. von Egidy and D. Bucurescu, PRC 78, 
051301 (2008)] confirmed our prediction. 

•  Staggering effect (in spin) for even-even nuclei. 
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Nuclear deformation in a spherical shell model approach 

•  Deformation is a key concept in understanding heavy nuclei but it is based 
     on a mean-field approximation that breaks rotational invariance.  

Fission dynamics requires level densities as a function of deformation. 

 The challenge is to study nuclear deformation in a framework that 
 preserves  rotational invariance. 

 We calculated the distribution of the axial mass quadrupole in the lab frame  
 using an exact projection on           (novel in that                      ). [Q20,H ]≠ 0Q20

Y. Alhassid, C.N. Gilbreth, and G.F. Bertsch, arXiv:1408:0081 (2014) 

Pβ (q) = 〈δ (Q20 − q)〉 =
1

Tr e−βH
dϕ
2π e

− iϕ qTr
−∞

∞

∫ (eiϕQ20e−βH )



Application to rare-earth nuclei 

  (a deformed nucleus)   

•  At low temperatures, the distribution is  similar 
     to that of a prolate rigid rotor  
       a model-independent signature of deformation. 

154Sm
• At            ,          is the many-particle  

eigenvalue distribution of  

• The many-particle eigenvalues 
are closely spaced, giving effectively 
a continuous distribution.!

• At high temperatures, a Gaussian.!

• At the mean-field shape transition  
(T = 1.14 MeV), distribution is skewed.!

• At low temperatures, the distribution  
is similar to that of a prolate rigid rotor,  
a clear signature of deformation.  

•          is close to a Gaussian even at  
low temperatures.
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FIG. 3: Probability distributions Pβ(q) for 154Sm at T =
0.1 MeV, T = 1.14 MeV (shape transition temperature) and
T = 4 MeV. The low-temperature distribution is compared
with the rigid-rotor distribution (dashed line) and reflects the
strongly deformed character of this nucleus.

MeV. The distribution is less skewed, but nevertheless it
retains some trace of a prolate character. The HFB exci-
tation energy at this temperature is about 25 MeV, much
higher than energies of interest for spectroscopy and for
the neutron-capture reaction. The top panel shows the
distribution at T = 4 MeV. At this high excitation the
distribution is featureless and close to a Gaussian.
We have also calculated Pβ(q) for 148Sm, which is

spherical in its HFB ground state. They are more sym-
metric and change less with temperature, consistent with
the absence of a coherent quadrupole moment.
Invariants.— Fig. 4 shows the second-order invariant

⟨Q̂ · Q̂⟩ vs temperature T for 148Sm and 154Sm. The
AFMC results (circles) are compared with the HFB re-
sults (dashed lines) of Eq. (6). In HFB, ⟨Q̂ · Q̂⟩ for 148Sm
can be entirely attributed to the fluctuation terms in (6).
There is a small kink at T = 0.4 MeV associated with
the pairing transition, but by and large the curve is flat.
The same is true of the AFMC curve. In contrast, ⟨Q̂ ·Q̂⟩
in 154Sm is very different at low temperatures. In HFB,
the intrinsic quadrupole moment Q0 is large, and it per-
sists up to a temperature of the order of 1 MeV, close
to the spherical-to-deformed phase-transition tempera-
ture. The AFMC results are in semiquantitative agree-
ment at the lowest temperatures showing that the coher-
ent intrinsic quadrupole moment is not an artifact of the
HFB. The sharp kink characterizing the HFB shape tran-
sition [19, 20] is washed out, as is expected in a finite-size
system. Nevertheless a signature of this phase transition
remains in the rapid decrease of ⟨Q · Q⟩ with tempera-
ture. In AFMC deformation effects survive well above
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FIG. 4: ⟨Q·Q⟩ vs temperature T for the spherical 148Sm (left)
and the deformed 154Sm (right). The AFMC results (solid
circles) are compared with the HFB results (dashed lines).

the transition temperature, in that ⟨Q · Q⟩ continues to
be enhanced beyond its uncorrelated mean-field value.
The second- and third-order invariants can be used

to define effective values of the intrinsic shape pa-
rameters β, γ [27] of the collective Bohr model [28,
Sec. 6B-1a]. The model assumes an intrinsic frame
in which the quadrupole deformation parameters α2µ =√
5π⟨Q̂2µ⟩/3r20A5/3 are expressed as α20 = β cos γ, α22 =

α2−2 = 1√
2
β sin γ, and α2±1 = 0. Effective β and γ can

then be determined from the corresponding invariants

β =

√
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3r20A
5/3

⟨Q̂ · Q̂⟩1/2 ; cos 3γ = −
√
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⟨(Q̂× Q̂) · Q̂⟩
⟨Q̂ · Q̂⟩3/2

.

(7)
In addition, we can extract a measure ∆β of the fluctu-
ations in β using the second- and fourth-order invariants

(∆β/β)2 =
[

⟨(Q̂ · Q̂)2⟩ − ⟨Q̂ · Q̂⟩2
]1/2

/⟨Q̂ · Q̂⟩ . (8)

The invariants themselves are calculated from the mo-
ments of Pβ(q) using the relations in Table I. As ex-
pected, the deformed 154Sm has a larger deformation
β than 148Sm (0.232 vs 0.137), but a smaller deforma-
tion angle γ (13.4◦ vs 21.6◦) that is closer to an axial
shape. The deformed nucleus is more rigid in that it has
a smaller ∆β/β, 0.51 for 154Sm vs 0.72 for 148Sm.
Summary.— We have demonstrated that the distribu-

tion of the axial quadrupole operator can be computed
in the AFMC method, and that it conveys important in-
formation about deformation and the intrinsic shapes of
nuclei at finite temperature. In particular, the expecta-
tion values of β2, β3 cos 3γ and the fluctuation in β2 can
be extracted as a function of temperature. With these
moments, it should be possible to construct models of the
joint level density distribution ρ(β, Ex) = ρ(Ex)PEx(β),
where ρ(Ex) is the total level density and PEx(β) is the
intrinsic shape distribution at excitation energy Ex. This
joint distribution is an important component in the the-
ory of fission and will be discussed in a future publication.

Application to 154Sm and 148Sm
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•  The distribution is close to a Gaussian even 
      at low temperatures. 
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a continuous distribution.!

• At high temperatures, a Gaussian.!

• At the mean-field shape transition  
(T = 1.14 MeV), distribution is skewed.!

• At low temperatures, the distribution  
is similar to that of a prolate rigid rotor,  
a clear signature of deformation.  

•          is close to a Gaussian even at  
low temperatures.
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with the rigid-rotor distribution (dashed line) and reflects the
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MeV. The distribution is less skewed, but nevertheless it
retains some trace of a prolate character. The HFB exci-
tation energy at this temperature is about 25 MeV, much
higher than energies of interest for spectroscopy and for
the neutron-capture reaction. The top panel shows the
distribution at T = 4 MeV. At this high excitation the
distribution is featureless and close to a Gaussian.
We have also calculated Pβ(q) for 148Sm, which is

spherical in its HFB ground state. They are more sym-
metric and change less with temperature, consistent with
the absence of a coherent quadrupole moment.
Invariants.— Fig. 4 shows the second-order invariant

⟨Q̂ · Q̂⟩ vs temperature T for 148Sm and 154Sm. The
AFMC results (circles) are compared with the HFB re-
sults (dashed lines) of Eq. (6). In HFB, ⟨Q̂ · Q̂⟩ for 148Sm
can be entirely attributed to the fluctuation terms in (6).
There is a small kink at T = 0.4 MeV associated with
the pairing transition, but by and large the curve is flat.
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in 154Sm is very different at low temperatures. In HFB,
the intrinsic quadrupole moment Q0 is large, and it per-
sists up to a temperature of the order of 1 MeV, close
to the spherical-to-deformed phase-transition tempera-
ture. The AFMC results are in semiquantitative agree-
ment at the lowest temperatures showing that the coher-
ent intrinsic quadrupole moment is not an artifact of the
HFB. The sharp kink characterizing the HFB shape tran-
sition [19, 20] is washed out, as is expected in a finite-size
system. Nevertheless a signature of this phase transition
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the transition temperature, in that ⟨Q · Q⟩ continues to
be enhanced beyond its uncorrelated mean-field value.
The second- and third-order invariants can be used

to define effective values of the intrinsic shape pa-
rameters β, γ [27] of the collective Bohr model [28,
Sec. 6B-1a]. The model assumes an intrinsic frame
in which the quadrupole deformation parameters α2µ =√
5π⟨Q̂2µ⟩/3r20A5/3 are expressed as α20 = β cos γ, α22 =

α2−2 = 1√
2
β sin γ, and α2±1 = 0. Effective β and γ can
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In addition, we can extract a measure ∆β of the fluctu-
ations in β using the second- and fourth-order invariants

(∆β/β)2 =
[

⟨(Q̂ · Q̂)2⟩ − ⟨Q̂ · Q̂⟩2
]1/2
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The invariants themselves are calculated from the mo-
ments of Pβ(q) using the relations in Table I. As ex-
pected, the deformed 154Sm has a larger deformation
β than 148Sm (0.232 vs 0.137), but a smaller deforma-
tion angle γ (13.4◦ vs 21.6◦) that is closer to an axial
shape. The deformed nucleus is more rigid in that it has
a smaller ∆β/β, 0.51 for 154Sm vs 0.72 for 148Sm.
Summary.— We have demonstrated that the distribu-

tion of the axial quadrupole operator can be computed
in the AFMC method, and that it conveys important in-
formation about deformation and the intrinsic shapes of
nuclei at finite temperature. In particular, the expecta-
tion values of β2, β3 cos 3γ and the fluctuation in β2 can
be extracted as a function of temperature. With these
moments, it should be possible to construct models of the
joint level density distribution ρ(β, Ex) = ρ(Ex)PEx(β),
where ρ(Ex) is the total level density and PEx(β) is the
intrinsic shape distribution at excitation energy Ex. This
joint distribution is an important component in the the-
ory of fission and will be discussed in a future publication.
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•  At the HFB shape transition temperature  
     (T=1.14 MeV), the distribution is still skewed. 
 
•  The distribution at high temperatures is close 
      to a Gaussian 
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Intrinsic deformation from lab frame distributions 

•  Information on intrinsic deformation can be obtained from the expectation  
     values of rotationally invariant combinations of    Q2µ

Example: the lowest order invariant is second order  〈Q ⋅Q〉
Intrinsic deformation

• Information on the intrinsic deforma-  
tion can be obtained from rotationally 
invariant combinations of        , which  
are related to the moments of        .!

• In the intrinsic frame                         
and!

• The intrinsic deformation parameters       can  
be determined from the quadrupole invariants:!

!

• Allows us to extract information about  
intrinsic deformation in the rotationally  
invariant framework of SMMC.

4

 0.0005

 0.001

 0.0015

P
(q

)

T=4.0 MeV

 0.0005

 0.001

 0.0015

P
(q

)

T=1.14 MeV

 0

 0.0005

 0.001

 0.0015

-1200 -600 0 600 1200

P
(q

)

q (fm
2
)

T=0.1 MeV

FIG. 3: Probability distributions Pβ(q) for 154Sm at T =
0.1 MeV, T = 1.14 MeV (shape transition temperature) and
T = 4 MeV. The low-temperature distribution is compared
with the rigid-rotor distribution (dashed line) and reflects the
strongly deformed character of this nucleus.
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higher than energies of interest for spectroscopy and for
the neutron-capture reaction. The top panel shows the
distribution at T = 4 MeV. At this high excitation the
distribution is featureless and close to a Gaussian.
We have also calculated Pβ(q) for 148Sm, which is
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metric and change less with temperature, consistent with
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can be entirely attributed to the fluctuation terms in (6).
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ture. The AFMC results are in semiquantitative agree-
ment at the lowest temperatures showing that the coher-
ent intrinsic quadrupole moment is not an artifact of the
HFB. The sharp kink characterizing the HFB shape tran-
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the transition temperature, in that ⟨Q · Q⟩ continues to
be enhanced beyond its uncorrelated mean-field value.
The second- and third-order invariants can be used

to define effective values of the intrinsic shape pa-
rameters β, γ [27] of the collective Bohr model [28,
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in which the quadrupole deformation parameters α2µ =√
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The invariants themselves are calculated from the mo-
ments of Pβ(q) using the relations in Table I. As ex-
pected, the deformed 154Sm has a larger deformation
β than 148Sm (0.232 vs 0.137), but a smaller deforma-
tion angle γ (13.4◦ vs 21.6◦) that is closer to an axial
shape. The deformed nucleus is more rigid in that it has
a smaller ∆β/β, 0.51 for 154Sm vs 0.72 for 148Sm.
Summary.— We have demonstrated that the distribu-

tion of the axial quadrupole operator can be computed
in the AFMC method, and that it conveys important in-
formation about deformation and the intrinsic shapes of
nuclei at finite temperature. In particular, the expecta-
tion values of β2, β3 cos 3γ and the fluctuation in β2 can
be extracted as a function of temperature. With these
moments, it should be possible to construct models of the
joint level density distribution ρ(β, Ex) = ρ(Ex)PEx(β),
where ρ(Ex) is the total level density and PEx(β) is the
intrinsic shape distribution at excitation energy Ex. This
joint distribution is an important component in the the-
ory of fission and will be discussed in a future publication.
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0.1 MeV, T = 1.14 MeV (shape transition temperature) and
T = 4 MeV. The low-temperature distribution is compared
with the rigid-rotor distribution (dashed line) and reflects the
strongly deformed character of this nucleus.

MeV. The distribution is less skewed, but nevertheless it
retains some trace of a prolate character. The HFB exci-
tation energy at this temperature is about 25 MeV, much
higher than energies of interest for spectroscopy and for
the neutron-capture reaction. The top panel shows the
distribution at T = 4 MeV. At this high excitation the
distribution is featureless and close to a Gaussian.
We have also calculated Pβ(q) for 148Sm, which is

spherical in its HFB ground state. They are more sym-
metric and change less with temperature, consistent with
the absence of a coherent quadrupole moment.
Invariants.— Fig. 4 shows the second-order invariant

⟨Q̂ · Q̂⟩ vs temperature T for 148Sm and 154Sm. The
AFMC results (circles) are compared with the HFB re-
sults (dashed lines) of Eq. (6). In HFB, ⟨Q̂ · Q̂⟩ for 148Sm
can be entirely attributed to the fluctuation terms in (6).
There is a small kink at T = 0.4 MeV associated with
the pairing transition, but by and large the curve is flat.
The same is true of the AFMC curve. In contrast, ⟨Q̂ ·Q̂⟩
in 154Sm is very different at low temperatures. In HFB,
the intrinsic quadrupole moment Q0 is large, and it per-
sists up to a temperature of the order of 1 MeV, close
to the spherical-to-deformed phase-transition tempera-
ture. The AFMC results are in semiquantitative agree-
ment at the lowest temperatures showing that the coher-
ent intrinsic quadrupole moment is not an artifact of the
HFB. The sharp kink characterizing the HFB shape tran-
sition [19, 20] is washed out, as is expected in a finite-size
system. Nevertheless a signature of this phase transition
remains in the rapid decrease of ⟨Q · Q⟩ with tempera-
ture. In AFMC deformation effects survive well above
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the transition temperature, in that ⟨Q · Q⟩ continues to
be enhanced beyond its uncorrelated mean-field value.
The second- and third-order invariants can be used

to define effective values of the intrinsic shape pa-
rameters β, γ [27] of the collective Bohr model [28,
Sec. 6B-1a]. The model assumes an intrinsic frame
in which the quadrupole deformation parameters α2µ =√
5π⟨Q̂2µ⟩/3r20A5/3 are expressed as α20 = β cos γ, α22 =

α2−2 = 1√
2
β sin γ, and α2±1 = 0. Effective β and γ can

then be determined from the corresponding invariants

β =

√
5π

3r20A
5/3

⟨Q̂ · Q̂⟩1/2 ; cos 3γ = −
√

7

2

⟨(Q̂× Q̂) · Q̂⟩
⟨Q̂ · Q̂⟩3/2

.

(7)
In addition, we can extract a measure ∆β of the fluctu-
ations in β using the second- and fourth-order invariants

(∆β/β)2 =
[

⟨(Q̂ · Q̂)2⟩ − ⟨Q̂ · Q̂⟩2
]1/2

/⟨Q̂ · Q̂⟩ . (8)

The invariants themselves are calculated from the mo-
ments of Pβ(q) using the relations in Table I. As ex-
pected, the deformed 154Sm has a larger deformation
β than 148Sm (0.232 vs 0.137), but a smaller deforma-
tion angle γ (13.4◦ vs 21.6◦) that is closer to an axial
shape. The deformed nucleus is more rigid in that it has
a smaller ∆β/β, 0.51 for 154Sm vs 0.72 for 148Sm.
Summary.— We have demonstrated that the distribu-

tion of the axial quadrupole operator can be computed
in the AFMC method, and that it conveys important in-
formation about deformation and the intrinsic shapes of
nuclei at finite temperature. In particular, the expecta-
tion values of β2, β3 cos 3γ and the fluctuation in β2 can
be extracted as a function of temperature. With these
moments, it should be possible to construct models of the
joint level density distribution ρ(β, Ex) = ρ(Ex)PEx(β),
where ρ(Ex) is the total level density and PEx(β) is the
intrinsic shape distribution at excitation energy Ex. This
joint distribution is an important component in the the-
ory of fission and will be discussed in a future publication.
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metric and change less with temperature, consistent with
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sults (dashed lines) of Eq. (6). In HFB, ⟨Q̂ · Q̂⟩ for 148Sm
can be entirely attributed to the fluctuation terms in (6).
There is a small kink at T = 0.4 MeV associated with
the pairing transition, but by and large the curve is flat.
The same is true of the AFMC curve. In contrast, ⟨Q̂ ·Q̂⟩
in 154Sm is very different at low temperatures. In HFB,
the intrinsic quadrupole moment Q0 is large, and it per-
sists up to a temperature of the order of 1 MeV, close
to the spherical-to-deformed phase-transition tempera-
ture. The AFMC results are in semiquantitative agree-
ment at the lowest temperatures showing that the coher-
ent intrinsic quadrupole moment is not an artifact of the
HFB. The sharp kink characterizing the HFB shape tran-
sition [19, 20] is washed out, as is expected in a finite-size
system. Nevertheless a signature of this phase transition
remains in the rapid decrease of ⟨Q · Q⟩ with tempera-
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the transition temperature, in that ⟨Q · Q⟩ continues to
be enhanced beyond its uncorrelated mean-field value.
The second- and third-order invariants can be used

to define effective values of the intrinsic shape pa-
rameters β, γ [27] of the collective Bohr model [28,
Sec. 6B-1a]. The model assumes an intrinsic frame
in which the quadrupole deformation parameters α2µ =√
5π⟨Q̂2µ⟩/3r20A5/3 are expressed as α20 = β cos γ, α22 =
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In addition, we can extract a measure ∆β of the fluctu-
ations in β using the second- and fourth-order invariants

(∆β/β)2 =
[
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]1/2
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The invariants themselves are calculated from the mo-
ments of Pβ(q) using the relations in Table I. As ex-
pected, the deformed 154Sm has a larger deformation
β than 148Sm (0.232 vs 0.137), but a smaller deforma-
tion angle γ (13.4◦ vs 21.6◦) that is closer to an axial
shape. The deformed nucleus is more rigid in that it has
a smaller ∆β/β, 0.51 for 154Sm vs 0.72 for 148Sm.
Summary.— We have demonstrated that the distribu-

tion of the axial quadrupole operator can be computed
in the AFMC method, and that it conveys important in-
formation about deformation and the intrinsic shapes of
nuclei at finite temperature. In particular, the expecta-
tion values of β2, β3 cos 3γ and the fluctuation in β2 can
be extracted as a function of temperature. With these
moments, it should be possible to construct models of the
joint level density distribution ρ(β, Ex) = ρ(Ex)PEx(β),
where ρ(Ex) is the total level density and PEx(β) is the
intrinsic shape distribution at excitation energy Ex. This
joint distribution is an important component in the the-
ory of fission and will be discussed in a future publication.
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•  The quadrupole invariants can be calculated from lab frame moments of  Q20

β ∝ (〈Q ⋅Q〉)1/2

cos3γ = − 7
2
〈(Q ×Q) ⋅Q〉
〈Q ⋅Q〉3/2

The sharp shape transition in HFB is 
washed out in the finite-size nucleus 

Construct the joint level density distribution ρ(β,Ex ) = ρ(Ex )PEx (β )
  where            is the intrinsic  shape distribution at given excitation energy     PEx (β ) Ex



                                     Conclusion 
•  SMMC is a powerful method for the microscopic calculation of level densities  
in very large model spaces. 

•  We have circumvented the odd-particle sign problem in SMMC, enabling the 
calculation of level densities of odd-mass nuclei.  

•  Microscopic description of collectivity in heavy nuclei. 

•  Damping of the collective vibrational and rotational enhancement factors of 
level densities correlates with the pairing and shape phase transitions. 

•  Description of nuclear deformation in a rotationally invariant framework.  

•  Other mass regions (actinides, unstable nuclei,…). 
 
•  Level densities as a function of deformation (useful for fission). 
 
•  Derive global effective shell model interactions from density functional theory. 

Prospects 


