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The nuclear level density is a crucial input to the Hauser-Feshbach 
theory of compound nucleus reactions.  Applications in 
astrophysical reaction rate calculations, nuclear technologies, etc. 

Theoretical level densities are necessary in cases where no 
experimental data exists, e.g., nuclei far from stability. 
Theoretical level densities are crucial for interpretation of 
experimental results: fluctuation properties of neutron resonances, 
normalization and spin distribution in Oslo method.

Motivation

Rauscher and Thielemann 
At. Data Nucl. Data. Table 
(2000) 
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Phenomenological level density (LD) models: back-shifted Fermi gas, Gilbert-
Cameron constant temperature 

Advantage: simple analytical expressions.   

Disadvantage: parameters must be adjusted for each nucleus to fit data 
well.  

It is useful to predict LD microscopically from underlying nuclear 
interactions. 

Thermodynamic approach to state density:   
 

Configuration-interaction (CI) shell-model approach

grand-canonical partition function

canonical entropy

heat capacity

CI shell model approach provides an accurate framework for calculating the 
LD in the presence of correlations.   

Limited by the combinatorial growth of the many-particle model space 
dimension.
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Basic idea: replace the two-body nucleon-nucleon interaction with an average 
single-particle potential.   
Hartree-Fock (HF) and Hartree-Fock-Bogoliubov (HFB) theory: the mean-
field potential is derived self consistently with respect to the single-particle 
density matrix ρ and pairing tensor κ. 

Relations between ρ, κ, Γ, and Δ are derived variationally by minimizing the 
grand thermodynamic potential. 

Advantage: thermodynamic quantities are calculated easily.   

Challenges:  
Correlations beyond the mean-field are neglected. 
Mean-field solutions often break symmetries of the underlying 
Hamiltonian (e.g., rotational symmetry in the deformed phase of HF/HFB, 
particle-number conservation in the pairing phase of HFB).  

Finite-temperature mean-field theory

HF HFB
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The level density can be calculated exactly in the shell model Monte 
Carlo (SMMC, c.f. Yoram’s talk).  However, this method requires more 
computational effort than mean-field theory, as well as “good-sign” 
interactions. 

Mean-field theory is widely used, but its inherent accuracy vs. exact 
methods is not well understood. 

Benchmark: compare the mean-field results against SMMC results 
using the same model space and the same interaction. 

Model space for rare-earth nuclei: protons: 50-82 shell plus 1f7/2, 

neutrons: 82-126 shell plus 0h11/2 and 1g9/2.    

Hamiltonian: Woods-Saxon plus spin orbit, pairing plus multipole-
multipole interactions.

Benchmarking the mean-field level density 
Alhassid, Bertsch, Gilbreth, Nakada, PRC (2016) 

Recent review: Alhassid, arXiv:1607:01870 
in a review book ed. K.D. Launey
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The HF and HFB potentials are determined in the grand-canonical 
ensemble, but the LD is defined within the microcanonical ensemble.   

Two-step process: 1. grand-canonical —> canonical.   
2. canonical —> microcanonical.  Focus of this work is on step 1. 

Usual method: saddle-point approximation of the integral in Step 1.   

Discrete Gaussian (DG) approximation: modify saddle point correction 
ζ to account for the fact that N is a discrete integer.  

Problems with DG: oscillations at low temperatures and computational 
effort.

Ensemble reduction
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Approximate canonical partition function found by taking trace of mean-field 
Gibbs operator               over only N particle-states.  N = (Np, Nn), Hmf is the 
grand-canonical mean-field Hamiltonian. 

This is known as particle-number projection (PNP) after variation. 

Particle-number projection is given by Fourier sum in a finite model space of Ns 
single-particle states.  

HF is particle-number-conserving, so evaluation of above trace is straightforward. 

In the HFB, particle-number conservation is broken in the pairing phase.  PNP is 
equivalent to symmetry restoration.   

The same techniques can be applied to restoration of rotational symmetry in 
deformed nuclei. 

To find LD: obtain canonical thermal energy and canonical entropy from Zc by 
the usual thermodynamic relations.

Particle-number projection and symmetry restoration 
Rossignoli and Ring, Ann. Phys. (1991)
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General formula for projection trace in HFB involves a phase ambiguity 
for each term in the Fourier sum. 

If the HFB energies come in degenerate time-reversed pairs, then the 
traces in the Fourier sum can be evaluated unambiguously by matrix 
algebra in the single-particle space 

This is possible because using only half the single-particle states fully 
defines the operators of interest.  

Particle-number projection in HFB with time-reversal 
symmetry 

PF, Alhassid, and Bertsch, arXiv:1610.08954 (2016), accepted to PRC.

Rossignoli and Ring, (1993)
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Reduction of mean-field state 
density in deformed phase because 
mean-field theory describes only the 
intrinsic states, not rotational bands. 

Unphysical negative mean-field 
entropy at low temperatures due to 
violation of particle-number 
conservation in HFB. 9

150Sm: transitional nucleus, deformed in the ground state

———: PNP 
- - -: DG 
o: SMMC



Finite-temperature HF and BCS: 162Dy and 148Sm

162Dy: strong deformation, 
weak pairing, HF.  See 
even more clearly 
enhancement in SMMC 
due to inclusion of 
rotational bands.

148Sm: spherical, BCS.  
Unphysical reduction of 
mean-field entropy causes 
reduction of mean-field state 
density in pairing phase.

———: PNP 
o: Open circles: SMMC
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Why does the mean-field approximate canonical entropy become 
negative below the pairing phase transition? 

At sufficiently low temperatures, the system is in the HFB ground state, 
which does not conserve particle number.

Low-temperature limit of the HFB
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Can extend this logic to higher temperatures in the pairing phase. 
This is a fundamental limitation on symmetry restoration projection 
after variation in finite-temperature mean-field theory.
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Consider cases in which the HFB Hamiltonian breaks time-reversal 
symmetry, e.g., for odd nuclei and triaxial nuclei. 

The general symmetry projection formula involves an undetermined 
phase in traces in Fourier sum.  This phase problem can be 
circumvented by a new formula involving the pfaffian: the square root 
of a determinant of a skew-symmetric matrix with a well-defined phase. 

This new formula allows symmetry restoration projection after variation 
for any HFB Hamiltonian. 

Highlights of the formula:

Projection in general HFB using pfaffians 
Robledo, PRC (2009).  Bertsch and Robledo, PRL (2012).  Fanto, in preparation.
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Validating the pfaffian method: 
particle-number projection in 150Sm 

Preliminary

————: pfaffian PNP 
+: time-reversal PNP 

Work in progress: application to a model with broken time-
reversal symmetry in the HFB. 13



The finite-temperature mean-field approximation works well for the calculation 
of level densities at excitation energies above the shape or pairing transitions. 

At energies below the shape transition, the mean-field state density is reduced 
due to the lack of rotational bands.   

At energies below the pairing transition in the HFB, the mean-field density is 
further reduced because of the inherent violation of particle-number 
conservation in the grand-canonical ensemble. 

We introduce a particle-number projection formula in the finite-temperature 
HFB approximation with time-reversal symmetry without a destructive phase 
ambiguity.    

We introduce and validate a formula for symmetry restoration projection for the 
most general HFB Hamiltonian without a destructive phase ambiguity.

Conclusions

Outlook
Develop variation after projection methods to avoid negative entropies at 
low temperatures. 

Spin dependence of level density in finite-temperature mean-field theory.
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Finite-temperature HF and BCS:  
162Dy and 148Sm

162Dy: strong deformation, weak pairing. 
148Sm: spherical, BCS

Rossignoli and Ring, (1993)
Esebbag and Egido, Nucl. Phys. A (1993). 
H. Flocard, Les Houches LXXIII (2001)
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State density vs. level density: state density counts 2J+1 degenerate states for each J 

⇢̃(E) =

(
⇢M=0(E) even-mass nuclei

⇢M=1/2(E) odd-mass nuclei

level density ρ(E) = state density
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150Sm: transitional nucleus deformed in the ground state

———: PNP 
-.-.-: DG 
o: SMMC

Reduction of mean-field entropy/state 
density in deformed phase because 
mean-field theory describes only the 
intrinsic states, not rotational bands 

Unphysical negative mean-field 
entropy at low temperatures: due to 
violation of number conservation in 
HFB.
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