The shape distribution of nuclear level densities in the shell model Monte Carlo method

Yoram Alhassid (Yale University)

Introduction

- Shell model Monte Carlo (SMMC) method and level densities
- Nuclear deformation in the spherical shell model: quadrupole distributions in the laboratory frame
- Quadrupole distributions in the intrinsic frame
- Level density vs. excitation energy and intrinsic deformation
- Conclusion and outlook

Recent review of SMMC: Y. Alhassid, arXiv:1607.01870, in a book edited by K.D. Launey (2017)

Introduction

The calculation of level densities in the presence of correlations is a challenging many-body problem.

- Often calculated using empirical formulas.
- Mean-field approximations can miss important correlations and are problematic in the broken symmetry phase (see talk of Paul Fanto).

The configuration-interaction (CI) shell model is a suitable framework to account for correlations beyond the mean field but the combinatorial increase of the dimensionality of its model space has hindered its applications in mid-mass and heavy nuclei.

 Conventional diagonalization methods for the shell model are limited to spaces of dimensionality ~ 10¹¹.

The shell model Monte Carlo (SMMC) enables microscopic calculations in spaces that are many orders of magnitude larger ($\sim 10^{30}$) than those that can be treated by conventional methods.

The shell model Monte Carlo (SMMC) method

Gibbs ensemble $e^{-\beta H}$ at temperature T $(\beta = 1/T)$ can be written as a superposition of ensembles U_{σ} of *non-interacting* nucleons moving in time-dependent fields $\sigma(\tau)$

$$e^{-\beta H} = \int D\left[\sigma\right] G_{\sigma} U_{\sigma}$$

Thermal expectation value of an observable O

$$\langle \hat{O} \rangle = \frac{\operatorname{Tr} \left(\hat{O} e^{-\beta \hat{H}} \right)}{\operatorname{Tr} \left(e^{-\beta \hat{H}} \right)} = \frac{\int \mathcal{D}[\sigma] G_{\sigma} \langle \hat{O} \rangle_{\sigma} \operatorname{Tr} \hat{U}_{\sigma}}{\int \mathcal{D}[\sigma] G_{\sigma} \operatorname{Tr} \hat{U}_{\sigma}}$$

where $\langle \hat{O} \rangle_{\sigma} \equiv \operatorname{Tr} \left(\hat{O} \hat{U}_{\sigma} \right) / \operatorname{Tr} \hat{U}_{\sigma}$

- The calculation of the integrands reduces to matrix algebra in the singleparticle space (of typical dimension ~ 100).
- The high-dimensional σ integration is evaluated by Monte Carlo methods.

G.H. Lang, C.W. Johnson, S.E. Koonin, W.E. Ormand, PRC 48, 1518 (1993); Y. Alhassid, D.J. Dean, S.E. Koonin, G.H. Lang, W.E. Ormand, PRL 72, 613 (1994).

Level density in SMMC Nakada and Alhassid, PRL **79**, 2939 (1997)

• Calculate the thermal energy $E(\beta) = \langle H \rangle$ versus β and integrate $-\partial \ln Z / \partial \beta = E(\beta)$ to find the partition function $Z(\beta)$.

The level density $\rho(E)$ is related to the partition function by an inverse Laplace transform:

$$\rho(E) = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} d\beta \, e^{\beta E} Z(\beta)$$

• The *average* state density is found from $Z(\beta)$ in the saddle-point approximation:

$$\rho(E) \approx \frac{1}{\sqrt{2\pi T^2 C}} e^{S(E)}$$

S(E) = canonical entropyC = canonical heat capacity $S(E) = \ln Z + \beta E$ $C = -\beta^2 \partial E / \partial \beta$

Heavy nuclei (lanthanides) in SMMC

CI shell model space:

protons: 50-82 shell plus $1f_{7/2}$; neutrons: 82-126 shell plus $0h_{11/2}$ and $1g_{9/2}$

Single-particle Hamiltonian: from Woods-Saxon potential plus spin-orbit

Interaction: pairing plus multipole-multipole interaction terms – quadrupole, octupole, and hexadecupole

We used SMMC to describe the crossover from vibrational to rotational collectivity in the framework of the spherical CI shell model.

The dependence of $\langle \vec{J}^2 \rangle$ on temperature T is sensitive to the type of collectivity

Nuclear deformation in the spherical shell model: quadrupole distributions in the laboratory frame

Alhassid, Gilbreth, Bertsch, PRL 113, 262503 (2014)

Modeling of shape dynamics, e.g., fission, requires level density as a function of deformation.

 Deformation is a key concept in understanding heavy nuclei but it is based on a mean-field approximation that breaks rotational invariance.

The challenge is to study nuclear deformation in a framework that preserves rotational invariance (e.g., in the CI shell model) without resorting to mean-field approximations.

We calculated the distribution of the axial mass quadrupole Q_{20} in the lab frame using an exact projection on Q_{20} (novel in that $[Q_{20}, H] \neq 0$).

$$P_{\beta}(q) = \langle \delta(Q_{20} - q) \rangle = \frac{1}{Tr e^{-\beta H}} \int_{-\infty}^{\infty} \frac{d\varphi}{2\pi} e^{-i\varphi q} Tr(e^{i\varphi Q_{20}} e^{-\beta H})$$

At low temperatures, the distribution is similar to that of a prolate rigid rotor
⇒ a model-independent signature of deformation.

• The distribution is close to a Gaussian even at low temperatures.

Ground-state distributions of $P(q_{20})$ for a family of samarium isotopes

• The distribution $P(q_{20})$ in the lab frame becomes skewed in the crossover from spherical to deformed nuclei

 The rapid decrease of (Q·Q) with temperature is a signature of the sharp shape transition in the mean field results (Hartree-Fock-Bogoliubov)

Quadrupole distributions $P_T(\beta,\gamma)$ in the intrinsic frame

Alhassid, Mustonen, Gilbreth, and Bertsch

Information on intrinsic deformation β , γ can be obtained from the expectation values of *rotationally invariant* combinations of the quadrupole tensor $q_{2\mu}$.

3 invariants to 4th order: $q \cdot q \propto \beta^2$; $(q \times q) \cdot q \propto \beta^3 \cos(3\gamma)$; $(q \cdot q)^2 \propto \beta^4$

 $\ln P_T(\beta,\gamma)$ at a given temperature *T* is an *invariant* and can be expanded in the quadrupole invariants [a Landau-like expansion, used for the free energy to describe shape transitions in Alhassid, Levit, Zingman, PRL **57**, 539 (1986)]

$$-\ln P_T = a\beta^2 + b\beta^3 \cos 3\gamma + c\beta^4 + \dots$$

• The expansion coefficients a,b,c... can be determined from the expectation values of the invariants, which in turn can be calculated from the low-order moments of $q_{20} = q$ in the lab frame.

$$< q \cdot q >= 5 < q_{20}^{2} >; < (q \times q) \cdot q >= -5\sqrt{\frac{7}{2}} < q_{20}^{3} >; < (q \cdot q)^{2} >= \frac{35}{3} < q_{20}^{4} >$$

Expressing the invariants in terms of $q_{2\mu}$ in the lab frame and integrating over the $\mu \neq 0$ components, we recover $P(q_{20})$ in the lab frame.

We find excellent agreement with $P(q_{20})$ calculated in SMMC !

 $-\ln P(\beta,\gamma)$

 Mimics a shape transition from a deformed to a spherical shape without using a mean-field approximation !

The parameter that controls the equilibrium shape is $\tau = ac / b^2$

 $\boldsymbol{\tau}$ as a function of temperature for the three samarium isotopes

The shape transition occurs at $\tau = 1/4$

We divide the β, γ plane into three regions: spherical, prolate and oblate.

Integrate over each deformation region to determine the probability of shapes versus temperature using the appropriate metric

$$\prod_{\mu} dq_{2\mu} \propto \beta^4 |\sin(3\gamma)| d\beta d\gamma$$

• Compare deformed (¹⁵⁴Sm), transitional (¹⁵⁰Sm) and spherical (¹⁴⁸Sm) nuclei

Level density versus intrinsic deformation

• Use the saddle-point approximation to convert $P_T(\beta,\gamma)$ to level densities vs. E_x, β, γ (canonical \Rightarrow micro canonical)

In strongly deformed nucleus, the contributions from prolate shapes dominate the level density below the shape transition energy.

In a spherical nucleus, both spherical and prolate shapes make significant contributions.

Conclusion

• SMMC is a powerful method for the microscopic calculation of level densities in very large model spaces; applications in nuclei as heavy as the lanthanides.

• The axial mass quadrupole distribution in the laboratory frame is a modelindependent signature of deformation.

• Quadrupole distributions in the intrinsic frame can be determined in a rotationally invariant framework (e.g., the CI shell model) using a Landau-like expansion.

- Mimics shape transitions without using a mean-field approximation.
- Deformation-dependent level densities can now be calculated in SMMC.

Outlook

- Applications to shape dynamics within a spherical shell model approach.
- Gamma strength functions by inversion of imaginary-time response functions calculated in AFMC.