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Introduction 

  - Often calculated using empirical formulas.  
 
  - Mean-field approximations can miss important correlations and are 
    problematic in the broken symmetry phase (see talk of Paul Fanto). 

The calculation of level densities in the presence of correlations is a 
challenging many-body problem. 

The configuration-interaction (CI) shell model is a suitable framework to  
account for correlations beyond the mean field but the combinatorial increase 
of the dimensionality of its model space has hindered its applications in  
mid-mass and heavy nuclei. 

•   Conventional diagonalization methods for the shell model are limited to 
   spaces of dimensionality ~ 1011. 

The shell model Monte Carlo (SMMC) enables microscopic calculations 
in spaces that are many orders of magnitude larger (~ 1030) than those 
that can be treated by conventional methods. 



The shell model Monte Carlo (SMMC) method 

  
e−βH = D σ⎡⎣ ⎤⎦∫  GσUσ

Gibbs ensemble           at temperature T                    can be written as a 
superposition of ensembles       of non-interacting nucleons moving in 
time-dependent fields 

 e−βH

Uσ
( )σ τ

•   The calculation of the integrands reduces to matrix algebra in the single-
particle space (of  typical dimension ~ 100). 

•   The high-dimensional       integration is evaluated by Monte Carlo methods. σ

(β = 1/T )

Thermal expectation value of an observable 

hÔi = Tr (Ôe��Ĥ)
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=

R
D[�]G�hÔi�Tr Û�R
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	O

G.H. Lang, C.W. Johnson, S.E. Koonin, W.E. Ormand, PRC  48, 1518 (1993);  
Y. Alhassid, D.J. Dean, S.E. Koonin, G.H. Lang, W.E. Ormand, PRL 72, 613 (1994). 



•  The average state density is found from             in the saddle-point  
approximation: 
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•   Calculate the thermal energy                       versus      and integrate 
                                          to find the partition function          . 

( )Z β

( )E Hβ =< > β

Level density in SMMC  

S(E) = canonical entropy            C = canonical heat capacity 

⇢(E) = 1
2⇡i

R i1
�i1 d� e�EZ(�)

The level density          is related to the partition function by an inverse 
 Laplace transform: 

⇢(E)

Nakada and Alhassid, PRL 79, 2939 (1997) 



Single-particle Hamiltonian:  from Woods-Saxon potential plus spin-orbit  

We used SMMC to describe the crossover from vibrational to rotational 
collectivity in the framework of the spherical CI shell model. 

Heavy nuclei (lanthanides) in SMMC 

CI shell model space: 

protons: 50-82 shell plus 1f7/2 ; neutrons: 82-126 shell plus 0h11/2 and 1g9/2 

Interaction: pairing plus multipole-multipole interaction terms – quadrupole, 
octupole, and hexadecupole 

Ozen, Alhassid, Nakada, PRL 110, 042502 (2013) 

The dependence of        on temperature T is sensitive to the type of collectivity     〈J
!"2

〉



•  Deformation is a key concept in understanding heavy nuclei but it is based 
     on a mean-field approximation that breaks rotational invariance.  

Modeling of shape dynamics, e.g., fission, requires level density as a 
function of deformation. 

 The challenge is to study nuclear deformation in a framework that 
 preserves rotational invariance (e.g., in the CI shell model) without 
resorting to mean-field approximations. 

 We calculated the distribution of the axial mass quadrupole       in the lab 
 frame using an exact projection on        (novel in that                     ). [Q20,H ]≠ 0Q20

Alhassid, Gilbreth, Bertsch, PRL 113, 262503 (2014) 

Pβ (q) = 〈δ (Q20 − q)〉 =
1

Tr e−βH
dϕ
2π e

− iϕ qTr
−∞

∞

∫ (eiϕQ20e−βH )

Nuclear deformation in the spherical shell model: 
quadrupole distributions in the laboratory frame 

Q20



Application to heavy nuclei 

  (deformed)   

•  At low temperatures, the distribution is similar to that of a prolate rigid rotor  
       a model-independent signature of deformation. 

154Sm

  (spherical)   

148Sm

•  The distribution is close to a Gaussian even at low temperatures. 

Rigid rotor 

⇒
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•  The distribution            in the lab frame becomes skewed in the crossover 
 from spherical to deformed nuclei  		P(q20)
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•  The rapid decrease of           with temperature is a signature of the sharp 
     shape transition in the mean field results (Hartree-Fock-Bogoliubov) 

	〈Q ⋅Q〉

SMMC 

↵ 

↵ 
HFB 



                  at a given temperature     is an invariant and can be expanded in 
the quadrupole invariants [a Landau-like expansion, used for the free energy 
to describe shape transitions in Alhassid, Levit, Zingman, PRL 57, 539 (1986)]  

•  The expansion coefficients a,b,c… can be determined from the 
expectation values of the invariants, which in turn can be calculated 
from the low-order moments of              in the lab frame.   q20 = q

Quadrupole distributions              in the intrinsic frame 

   Information on intrinsic deformation        can be obtained from the expectation  
   values of rotationally invariant combinations of the quadrupole tensor        .    q2µ

β,γ

PT (β,γ )

− lnPT =aβ
2 + bβ 3 cos3γ + cβ 4 + ...

lnPT (β,γ )

Alhassid, Mustonen, Gilbreth, and Bertsch 

q ⋅q ∝β 2 (q × q) ⋅q ∝β 3 cos(3γ ) (q ⋅q)2 ∝β 4
3 invariants to 4th order:                 ;                                          ;                               

		
<q ⋅q>=5<q202 >; <(q×q)⋅q>= −5 7

2 <q20
3 >; <(q ⋅q)2 >= 353 <q20

4 >

	T



Expressing the invariants in terms of         in the lab frame and integrating 
over the          components, we recover             in the lab frame. 

q2µ
µ ≠ 0 P (q20 )

We find excellent agreement with            calculated in SMMC ! P (q20 )
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•  Mimics a shape transition from a deformed to a spherical shape 
     without using a mean-field approximation ! 

154Sm

		− lnP(β ,γ )
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The parameter that controls the equilibrium shape is 		τ = ac /b
2
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Quadrupole 
 distributions      vs. 
axial deformation 	PT β
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    as a function of temperature 
 for the three samarium isotopes 
τ

	τ =1/4
The shape transition occurs at 



We divide the         plane into three regions: 
spherical, prolate and oblate. 

Integrate over each deformation region to determine 
the probability of shapes versus temperature using 
the appropriate metric  

β,γ

•  Compare deformed (154Sm), transitional (150Sm) and spherical (148Sm) nuclei 
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Level density versus intrinsic deformation  
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•  Use the saddle-point approximation to convert PT(       ) to 
level densities vs. Ex,        (canonical     micro canonical)

β,γ
β,γ

Deformed  Transitional Spherical 

Ex (MeV) 

⇒

In strongly deformed nucleus, the contributions from prolate shapes 
dominate the level density below the shape transition energy. 

 In a spherical nucleus, both spherical and prolate shapes make significant 
 contributions. 



                                     Conclusion 
•  SMMC is a powerful method for the microscopic calculation of level densities  
in very large model spaces; applications in nuclei as heavy as the lanthanides.  

•  The axial mass quadrupole distribution in the laboratory frame is a model-
independent signature of deformation. 

•  Quadrupole distributions in the intrinsic frame can be determined in a 
rotationally invariant framework (e.g., the CI shell model) using a Landau-like 
expansion. 

•   Mimics shape transitions without using a mean-field approximation. 

•  Deformation-dependent level densities can now be calculated in SMMC.   

•   Applications to shape dynamics within a spherical shell model approach. 
 
•   Gamma strength functions by inversion of imaginary-time response functions 
   calculated in AFMC.  

Outlook 


