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Introduction 

  

•     Most microscopic treatments of mid-mass and heavy nuclei are based 
     on mean-field methods, e.g., density function theory. 

The challenge:  microscopic calculations of nuclear properties from 
underlying effective interactions 

•  Ab initio methods have been developed:  
     Green function Monte Carlo 
     No-core shell model 
     Lattice effective field theory 
     Coupled cluster (CC) method 
     … 

 However, they are mostly limited to light nuclei or to nuclei near shell 
 closure (CC). 

However, important correlations can be missed. 



The configuration-interaction (CI) shell model takes into account  
correlations beyond the mean-field but the combinatorial increase of the 
dimensionality of its model space has hindered its applications in mid-mass  
and heavy nuclei. 

•  The auxiliary-field Monte Carlo (AFMC) method for the shell model enables  
    calculations in model spaces that are many orders of magnitude larger than 
     those that can be treated by conventional diagonalization methods.  

G.H. Lang, C.W. Johnson, S.E. Koonin, W.E. Ormand, PRC  48, 1518 (1993);  
Y. Alhassid, D.J. Dean, S.E. Koonin, G.H. Lang, W.E. Ormand, PRL 72, 613 (1994). 

Also known in nuclear physics as the shell model Monte Carlo (SMMC) 
 method.  
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Each interaction factor can be written as an integral over an auxiliary field 

      are single-particle energies and       are linear combinations of one-body 
densities                    . 

At inverse temperature             , we write                                where       
is the number of time slices. For each time slice [to order          ]                   
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We obtain the HS transformation describing a path integral over 
 time-dependent auxiliary fields 
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Here                                                        is a Gaussian weight, 

and       is a one-body propagator of non-interacting nucleons in external 
time-dependent auxiliary fields  

is a one-body Hamiltonian defined for each configuration of the fields  ĥ�(⌧)
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Thermal expectation values of observables 
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Quantities in the integrands can be expressed in terms of the single-particle 
 representation matrix       of the propagator : 
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iajÛ�)

Tr Û�
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•   The integrand reduces to matrix algebra in the single-particle space (of  
typical dimension 50 – 100).  



Particle-number projection 

In a finite-size system, it is necessary to project on the canonical ensemble 
 of fixed particle number     . In the Fock space spanned by      single-particle  
orbitals, this can be done by an exact discrete Fourier transform. 
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ÔÛ�
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Canonical partition:  

Canonical expectation of an observable O: 



Quantum Monte Carlo methods and sign problem 

The path integrals are done by Monte Carlo methods, sampling the fields  
according to a weight 

�� ⌘ TrA U�/|TrA U�| is the Monte Carlo sign function. 

For a generic interaction, the sign can be negative for some of the field  
configurations.  When the average sign is small (compared with 1),  
the fluctuations become very large        the Monte Carlo sign problem. 
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where       is the time-reversed density. 
We can rewrite 

Sign rule: when all             ,                   for any configuration     and 
the interaction is known as a good-sign interaction. 
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Proof: when all             , we have                                                               
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Good-sign interactions 



 The dominant collective components 
 of effective nuclear interactions have 
 a good sign.  

A family of good-sign interactions is constructed by multiplying the bad-sign  
components by a negative parameter g 

A practical method for overcoming the sign problem 

      

In the calculation of statistical and collective properties of nuclei, we have 
used good-sign interactions. 

H = HG + gHB

Observables are calculated for                        and extrapolated to            . �1 < g < 0

Alhassid, Dean, Koonin, Lang, Ormand, PRL 72, 613 (1994). 

g = 1



 Applications of AFMC to odd-even and odd-odd nuclei has been hampered by  
a sign problem that originates from the projection on an odd number of particles. 

•   We introduced a method to calculate the ground-state energy of the  
odd-particle system that circumvents this sign problem. 

We calculate the imaginary-time scalar single-particle Green’s functions in 
even-even nuclei for all single-particle orbitals               :  

†( ) ( ) (0)m m mG T a aν ν ντ τ=Σ

n l jν =

In the asymptotic regime in  τ

[ ( 1) ( )] | |( )~ j gsE A E AG e β τ
ν τ − ± −

Circumventing the odd particle-number sign problem 

Mukherjee and Alhassid, PRL 109, 032503 (2012) 

(1 < ⌧ ⌧ �)



Statistical errors of ground-state energy: 
in direct SMMC vs. Green’s function 
method 

•  The energy difference between the 
lowest energy of the odd-particle 
system for a given spin J=j and the 
ground-state energy of the even-
particle system can be extracted 
from the slope of              . ln ( )Gν τ

( 1)jE A±•   Minimize               to find the 
ground-state energy and its spin J=j 

direct SMMC 
Direct SMMC 

Green’s function method 

Direct SMMC 

Green’s function method 



Applications: statistical properties of nuclei 

Statistical properties, and, in particular, level densities, are important input in 
the Hauser-Feshbach theory of compound nuclear reactions, but are not 
always accessible to direct measurements. 

•  Most approaches are based on empirical modifications of the Fermi gas  
     formula or on mean-field approximations that can often miss important 
     correlations. 

The calculation of level densities in the presence of correlations is a 
challenging many-body problem. 

•     The configuration-interaction (CI) shell model accounts for correlations but  
     diagonalization methods are limited to spaces of dimensionality  ~ 1011. 

The AFMC method enables microscopic calculations in spaces that are 
many orders of magnitude larger (~ 1030). 

AFMC is the state-of-the-art method for the microscopic calculation of 
statistical properties of nuclei. 



•  The average state density is found from             in the saddle-point  
approximation: 
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Level density in the AFMC  

S(E) = canonical entropy            C = canonical heat capacity 
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The level density          is related to the partition function by an inverse 
 Laplace transform: 

⇢(E)

Nakada and Alhassid, PRL 79, 2939 (1997) 



Mid-mass nuclei (iron region) 

Bonett-Matiz, Mukherjee, 
Alhassid, PRC  88, 011302 R (2013) 

Excellent agreement 
with experiments: 
(i) level counting, 
(ii) proton evaporation 
Spectra (Ohio U., 2012), 
(iii) neutron resonance 
data 

CI shell model model space: complete fpg9/2 shell. 

   Isoscalar interaction: includes the dominant components of effective interactions 

•  Pairing strength is determined from odd-even mass differences 

•  Multipole-multipole interaction terms -- quadrupole, octupole, and hexadecupole, 
determined from a self-consistent condition and renormalized by k2=2, k3=1.5, k4=1.   

Single-particle Hamiltonian:  from Woods-Saxon potential plus spin-orbit   

Level densities in nickel isotopes 



Pairing gaps from odd-even mass differences 

•   Good agreement with experimental values 

Mukherjee and Alhassid, PRL 109, 032503 (2012) 



Heavy nuclei exhibit various types of collectivity (vibrational, rotational, … ) 
that are well described by empirical models. 

However, a microscopic description in a CI shell model has been lacking. 

Single-particle Hamiltonian:  from Woods-Saxon potential plus spin-orbit  

Can we describe vibrational and rotational collectivity in heavy nuclei 
 using a spherical CI shell model approach in a truncated space ? 

Heavy nuclei (lanthanides) 

CI shell model space: 

protons: 50-82 shell plus 1f7/2 ; neutrons: 82-126 shell plus 0h11/2 and 1g9/2 

Interaction: pairing plus multipole-multipole interaction terms  
– quadrupole, octupole, and hexadecupol. 



The behavior of            versus      is sensitive to the type of collectivity:    〈J
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Alhassid, Fang, Nakada, PRL 101 (2008) Ozen, Alhassid, Nakada, PRL 110 (2013) 

The various types of collectivity are usually identified by their corresponding 
spectra, but AFMC does not provide detailed spectroscopy.  



AFMC describes well the crossover from vibrational to rotational 
collectivity in good agreement with the experimental data at low T.  

T
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•  Experimental values are found from  
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•   Add the contribution of higher levels using the experimental level 
density to get an experimental values at higher    . 

Crossover from vibrational to rotational collectivity in heavy nuclei 
Ozen, Alhassid, Nakada, PRL 110 (2013) 



Level densities in samarium and neodymium isotopes 

•    Good agreement of AFMC densities with various experimental data sets  
    (level counting, neutron resonance data when available). 
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Projection on good quantum numbers: spin distributions in 
 mid-mass nuclei [Alhassid, Liu, Nakada, PRL 99, 162504 (2007)] 

        = spin cutoff parameter 

  
•  Analysis of experimental data [von Egidy and Bucurescu, PRC 78, 051301 R 
(2008)] confirmed our prediction. 

•  Staggering effect (in spin) for even-even nuclei 
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 AFMC distributions agree well with an empirical staggered spin cutoff     
formula based on low-energy counting data.  

•  Good agreement with spin-cutoff (s.-c.) model at higher excitations 

•  Odd-even staggering in spin at low excitation energies 
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Spin distributions in heavy nuclei: 162Dy 
  Gilbreth, Alhassid, Bonett-Matiz (2016) 



Example: nuclear deformation in a spherical shell model approach 

•  Deformation is a key concept in understanding heavy nuclei but it is based 
     on a mean-field approximation that breaks rotational invariance.  

Modeling of fission requires level density as a function of deformation. 

 The challenge is to study nuclear deformation in a framework that 
 preserves rotational invariance. 

 We calculated the distribution of the axial mass quadrupole in the lab frame  
 using an exact projection on           (novel in that                      ) : [Q20,H ]≠ 0Q20

Alhassid, Gilbreth, Bertsch, PRL 113, 262503 (2014) 

Pβ (q) = 〈δ (Q20 − q)〉 =
1

Tr e−βH
dϕ
2π e

− iϕ qTr
−∞

∞

∫ (eiϕQ20e−βH )

Projection on an order parameter (associated with a broken symmetry)  



Application to heavy nuclei 

  (deformed)   

•  At low temperatures, the distribution is similar to that of a prolate rigid rotor  
       a model-independent signature of deformation 

154Sm

  (spherical)   

148Sm

•  The distribution is close to a Gaussian even at low temperatures. 

Rigid rotor 

AFMC 
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                  at a given temperature T is an invariant and can be expanded in 
the quadrupole invariants                                                        .  
•  The expansion coefficients a, b, c… can be determined from the 

expectation values of the invariants, which in turn can be calculated 
from the low-order moments of              . q20 = q

•  Mimics a shape transition from a deformed to a spherical shape 
     without using a mean-field approximation ! 

Intrinsic shape distributions 

   Information on intrinsic deformation        can be obtained from the expectation  
   values of rotationally invariant combinations of the quadrupole tensor        .    q2µ

β,γ

PT (β,γ )

− lnPT =aβ
2 − bβ 3 cos3γ + cβ 4 + ...

lnPT (β,γ )

Alhassid, Mustonen, Gilbreth, Bertsch (2016) 
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We divide the          plane into three regions: 
spherical, prolate and oblate. 

Integrate over each deformation region to determine the 
probability of shapes versus temperature. 
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•  Compare deformed (154Sm), transitional (150Sm) and spherical (148Sm) nuclei: 



Level density versus intrinsic deformation  
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Application to the trapped cold atom Fermi gas condensate 

Study the nature of the superfluid phase transition in the finite trapped 
Fermi gas condensate. 

•   Are there pairing pseudogap effects prior to condensation in the unitary gas ? 

Monte Carlo calculations of the homogenous gas suggested a pseodugap.  

Magieriski, Wlazlowski, Bulgac and Drut, PRL 103, 210403 (2009)  

Gilbreth and Alhassid, PRA 88, 063643 (2013) 



(iii) Condensate fraction 

Define a pair correlation matrix for good angular momentum L : 
†( , ) ( ) ( )L LM LMC ab cd A ab A cd↑↓ ↑↓=< >

† ( )LMA ab↑↓where                    is a pair creation operators of particles in orbitals a and b. 

Maximal eigenvalue occurs for L=0 and defines the condensate. 

(i) Model-independent gap (requires the canonical ensemble) 

Signatures of pairing correlations: 

(ii) Heat capacity 

Numerical differentiation inside the path integral, taking into account 
correlated errors that reduce the statistical errors by an order of magnitude. 
[Liu and Alhassid, PRL 87, 022501 (2001)] 

�gap ⌘ [2E(N", N# � 1)� E(N", N#)� E(N" � 1, N# � 1)]/2



AFMC results for 20 atoms (10+10) 
in the unitary gas 

•    Clear signatures of the superfluid 
     phase transition below / 0.175FT T ≈

•  In the finite-size trapped system, 
 the gap does not appear to lead the 
 condensate fraction as temperature 
 decreases. 

      No clear signature of a pseudogap 
      phase in the energy-staggering 
      pairing gap for the finite condensate 

)



                                     Conclusion 
•  Finite-temperature AFMC is a powerful method for the microscopic 
calculation of statistical properties (e.g., level densities) of nuclei in very large 
model spaces; applications in nuclei as heavy as the lanthanides.  

•  Microscopic description of collectivity in heavy nuclei. 

•  Spin distributions: odd-even staggering in even-even nuclei at low excitation 
energies; spin cutoff model at higher excitations. 

•  Statistical properties as a function of intrinsic deformation in a rotationally 
invariant framework (CI shell model).  

•  Other mass regions (actinides, unstable nuclei,…). 
 
•   Gamma strength functions in AFMC by inversion of imaginary-time response 
functions.  

•  Derive global effective shell model interactions from density functional theory. 

Outlook 


