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Introduction 

  

•     Most microscopic treatments of mid-mass and heavy nuclei are based 
     on mean-field methods, e.g., density functional theory. 

The challenge:  microscopic calculations of nuclear properties from 
underlying effective interactions 

•  Ab initio methods have been developed:  
     Green function Monte Carlo 
     No-core shell model 
     Lattice effective field theory 
     Coupled cluster (CC) method 
     … 

 However, they are mostly limited to light nuclei or to nuclei near shell 
 closure (CC). 

However, important correlations can be missed. 



•  Conventional diagonalization methods for the shell model are limited to 
spaces of dimensionality ~ 1011. 

The auxiliary-field Monte Carlo (AFMC method) enables microscopic 
calculations in spaces that are many orders of magnitude larger (~ 1030) 
than those that can be treated by conventional methods. 

Also known in nuclear physics as the shell model Monte Carlo (SMMC) 
method.  

G.H. Lang, C.W. Johnson, S.E. Koonin, W.E. Ormand, PRC  48, 1518 (1993);  
Y. Alhassid, D.J. Dean, S.E. Koonin, G.H. Lang, W.E. Ormand, PRL 72, 613 (1994). 

The configuration-interaction (CI) shell model takes into account  
correlations beyond the mean-field but the combinatorial increase of the 
dimensionality of its model space has hindered its applications in mid-mass  
and heavy nuclei. 



Hubbard-Stratonovich (HS) transformation 

Assume an effective Hamiltonian in Fock space with a one-body part and a 
two-body interaction : 
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The HS transformation describes the Gibbs ensemble          at inverse 
temperature            as a path integral over time-dependent auxiliary fields 
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Thermal expectation values of observables 
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D[�]G�Tr Û�
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Grand canonical quantities in the integrands can be expressed in terms 
 of the single-particle representation matrix       of the propagator : 
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=

h
1

1+U�1
�

i

ji

U�

•   The integrand reduces to matrix algebra in the single-particle space  (of  
typical dimension ~100). 

Canonical (i.e., fixed N,Z) quantities are calculated by an exact particle-number 
 projection (using a discrete Fourier transform). 



Quantum Monte Carlo methods and sign problem 

The high-dimensional     integration is done by Monte Carlo methods,  
sampling the fields according to a weight 

�� ⌘ TrA U�/|TrA U�| is the Monte Carlo sign function. 

For a generic interaction, the sign can be negative for some of the field  
configurations.  When the average sign is small, the fluctuations become 
very large        the Monte Carlo sign problem. 
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where       is the time-reversed density. 
We can rewrite 

Sign rule: when all             ,                   for any configuration     and 
the interaction is known as a good-sign interaction. 
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Good-sign interactions 
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The dominant collective  
components of effective 
nuclear interactions have 
 a good sign.  

A family of good-sign interactions is constructed by multiplying the bad-sign  
components by a negative parameter g 

A practical method for overcoming the sign problem 

      

In the calculation of statistical and collective properties of nuclei, we have 
used good-sign interactions. 

H = HG + gHB

Observables are calculated for                        and extrapolated to            . �1 < g < 0

Alhassid, Dean, Koonin, Lang, Ormand, PRL 72, 613 (1994). 
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 Applications of AFMC to odd-even and odd-odd nuclei has been hampered by  
a sign problem that originates from the projection on odd number of particles. 

†( ) ( ) (0)m m mG T a aν ν ντ τ=Σ n l jν =

  Gν (τ )~ e−[ E j ( A±1)− Egs ( A)] |τ |

Circumventing the odd-particle sign problem in AFMC 
Mukherjee and Alhassid, PRL 109, 032503 (2012) 

•   We introduced a method to calculate the ground-state energy of the  
odd-particle system that circumvents this sign problem. 

•  The energy difference between the 
lowest energy of the odd-particle 
system for a given spin j and the 
ground-state energy of the even-
particle system can be extracted from 
the slope of              .  ln ( )Gν τ

( 1)jE A±

Consider the imaginary-time single-particle Green’s functions for even-even 
 nuclei:                                           for orbitals  

  Minimize                 to find the ground-
state energy and its spin j. 



Statistical errors of ground-state energy of           
Direct AFMC versus Green�s function method 

Pairing gaps in mid-mass nuclei from odd-even mass differences 

direct SMMC 
Direct AFMC 

Green�s function method 

•  AFMC in the complete fpg9/2 shell (in good agreement with experiments) 

Direct AFMC 

Green�s function method 



•  The average state density is found from             in the saddle-point 
approximation: 
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 Calculate the thermal energy                       versus      and integrate 
                                      to find the partition function          . 
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  E(β ) =< H > β

Statistical properties in the AFMC method  

S(E) = canonical entropy            C = canonical heat capacity 

⇢(E) = 1
2⇡i

R i1
�i1 d� e�EZ(�)

The level density          is related to the partition function by an inverse 
 Laplace transform: 

⇢(E)

Partition function 

Level density 

Nakada and Alhassid, PRL 79, 2939 (1997) 



Heavy nuclei exhibit various types of collectivity (vibrational, rotational, … ) 
that are well described by empirical models. 

However, a microscopic description in a CI shell model has been lacking. 

Single-particle Hamiltonian:  from Woods-Saxon potential plus spin-orbit  

Can we describe vibrational and rotational collectivity in heavy nuclei 
 using a spherical CI shell model approach in a truncated space ? 

Heavy nuclei (lanthanides) 

CI shell model space: 

protons: 50-82 shell plus 1f7/2 ; neutrons: 82-126 shell plus 0h11/2 and 1g9/2 

Interaction: pairing (gp,gn) plus multipole-multipole interaction terms – 
quadrupole, octupole, and hexadecupole. 



The behavior of            versus      is sensitive to the type of collectivity:    〈J
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〉
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Alhassid, Fang, Nakada, 
 PRL 101, 082501 (2008) 

Ozen, Alhassid, Nakada,  
PRL 110, 042502 (2013) 

The various types of collectivity are usually identified by their corresponding 
spectra, but AFMC does not provide detailed spectroscopy.  



Good agreement of  
AFMC densities with 
various experimental  
data sets (level counting,  
neutron resonance data). 

versus     in samarium isotopes    〈J
!"2

〉

Crossover from vibrational to rotational collectivity in heavy nuclei 
Ozen, Alhassid, Nakada, PRL 110, 042502 (2013) 
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•  Deformation is a key concept in understanding heavy nuclei but it is based 
     on a mean-field approximation that breaks rotational invariance.  

Modeling of shape dynamics, e.g., fission, requires level density as a 
function of deformation. 

The challenge is to study nuclear deformation in a framework that 
preserves rotational invariance (e.g., in the CI shell model) without resorting 
to mean-field approximations. 

 We calculated the distribution of the axial mass quadrupole       in the lab 
 frame using an exact projection on        (novel in that                     ). [Q20,H ]≠ 0Q20

Alhassid, Gilbreth, Bertsch, PRL 113, 262503 (2014) 

Pβ (q) = 〈δ (Q20 − q)〉 =
1

Tr e−βH
dϕ
2π e

− iϕ qTr
−∞

∞

∫ (eiϕQ20e−βH )

Nuclear deformation in the spherical shell model: 
quadrupole distributions in the laboratory frame 

Q20



Application to heavy nuclei 

  (deformed)   

•  At low temperatures, the distribution is similar to that of a prolate rigid rotor  
       a model-independent signature of deformation. 

154Sm

  (spherical)   

148Sm

•  The distribution is close to a Gaussian even at low temperatures. 

Rigid rotor 

⇒
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                  at a given temperature     is an invariant and can be expanded in 
the quadrupole invariants [a Landau-like expansion, used for the free energy 
to describe shape transitions in Alhassid, Levit, Zingman, PRL 57, 539 (1986)]  

•  The expansion coefficients a,b,c… can be determined from the 
expectation values of the invariants, which in turn can be calculated 
from the low-order moments of              in the lab frame.   q20 = q

Quadrupole distributions               vs. intrinsic deformation 

   Information on intrinsic deformation        can be obtained from the expectation  
   values of rotationally invariant combinations of the quadrupole tensor        .    q2µ

β,γ

PT (β,γ )

− lnPT =aβ
2 + bβ 3 cos3γ + cβ 4 + ...

lnPT (β,γ )

Mustonen, Alhassid, Gilbreth, Bertsch 

q ⋅q ∝β 2 (q × q) ⋅q ∝β 3 cos(3γ ) (q ⋅q)2 ∝β 4
3 invariants to 4th order:                 ;                                          ;                               

		
<q ⋅q>=5<q202 >; <(q×q)⋅q>= −5 7

2 <q20
3 >; <(q ⋅q)2 >= 353 <q20

4 >

	T



Expressing the invariants in terms of         in the lab frame and integrating 
over the          components, we recover             in the lab frame. 

q2µ
µ ≠ 0 P (q20 )

We find excellent agreement with            calculated in AFMC ! P (q20 )
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•  Mimics a shape transition from a deformed to a spherical shape 
     without using a mean-field approximation ! 

154Sm

		− lnP(β ,γ )
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Quantum shape transition (at T=0) vs. neutron number 
	N→

Thermal  
shape 
transition vs. 
temperature 
(or excitation 
 energy) 
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We divide the         plane into three regions: 
spherical, prolate and oblate. 

Integrate over each deformation region to determine 
the probability of shapes versus temperature using 
the appropriate metric  

β,γ

•  Compare deformed (154Sm), transitional (150Sm) and spherical (148Sm) nuclei 
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Level density versus intrinsic deformation  
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•  Use the saddle-point approximation to convert PT(       ) to 
level densities vs. Ex,        (canonical     micro canonical)

β,γ
β,γ

Deformed  Transitional Spherical 

Ex (MeV) 

⇒

In strongly deformed nuclei, the contributions from prolate shapes dominate 
the level density below the shape transition energy. 

 In spherical nuclei, both spherical and prolate shapes make significant 
 contributions. 



Double Beta Decay in AFMC

•
We can do heavy nuclei in the pn-formalism using AFMC

•
AFMC shell-model estimates for open-shell and heavy nuclei

•
Estimate contribution of the model space truncation to the gA
quenching

E0
i 0

+
i

Em

E0
f 0

+
f

��

mother intermediate daughter



Matrix elements from response functions in AFMC

• Ô(t) = etHÔe�tH

hÔ†(t)Ô(0)i = 1

Âi e
�bEi

Â
fi

e�bEi e�t(Ef �Ei )|hf |Ô |ii|2

•
At the limit b ! •, t ⌧ b, and large t, only the lowest

possible Ef = E 0
f and Ei = E 0

i contribute:

hÔ†(t)Ô(0)i = e�t(E0
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i )|hf0|Ô |i0i|2

•
If Ô is the mass quadrupole Q̂2, for an even-even nucleus

hÔ†(t)Ô(0)i = e�tE2+
x |h2+1 |Q̂2|0+g.s.i|2

where 2

+
1 is the lowest 2

+
state (C.N. Gilbreth et al.)



2nbb in AFMC

•
Closure approximation:

M2n = Â
m

h0+f |~G |mi · hm|~G |0+i i
Em � 1

2 (E
0
f + E 0

i )
⇡ h0+f |~G · ~G |0+i i

Ē � 1
2 (E

0
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where G = Âa~sat�
a .

•
With Ô = ~G · ~G (a separable two-body operator):

hÔ†(t)Ô(0)i = e�t(E0
f �E0

i )|h0+f |~G · ~G |0+i i|
2

•
To go beyond the closure approximation, a more complicated

approach is needed (P.B. Radha et al., PRL 76, 2642 (1996)

for

48
Ca,

76
Ge)



0nbb in AFMC

•
Can be calculated in the closure approximation

•
The Gamow-Teller part:

Ô =
2R

1.25

2p

Z •

0
dq q

Âab j0(qrab)hGT(q)~sa ·~sbt�
a t�

b

q + Ē + 1
2 (E

0
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•
Non-separable two-body operator

•
AFMC could then be used to evaluate

hÔ†(t)Ô(0)i = e�t(E0
f �E0

i )| h0+f |Ô |0+i i| {z }
M 00n

GT

|2

•
The method used for calculating response functions of

one-body operators can be generalized to two-body operators



Finite-temperature AFMC is a powerful method for the microscopic calculation 
of statistical and collective properties of nuclei in very large model spaces; 
applications in nuclei as heavy as the lanthanides.  

•  Microscopic description of collectivity in heavy nuclei 

•  Statistical properties as a function of intrinsic deformation in a rotationally 
invariant framework (CI shell model) without the use of a mean-field 
approximation 

•  Applications to other mass regions (actinides, unstable nuclei,…). 
 
•  Matrix elements for neutrinoless double beta decay in very large shell 

model spaces  

Outlook 

Conclusion 


