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Introduction

Two-species (spin up/down) fermionic
atoms interacting with a very
short-range interaction                 
characterized by a scattering length    . a

Of particular interest is the unitary limit of strongest interaction               	a→∞

(i) Trapped gas in a spherical harmonic trap
(ii) Homogenous gas in a box

Many interesting properties: universality, scale invariance,…

• A challenging non-perturbative many-body problem

A variety of quantum Monte Carlo methods have been used: auxiliary field, 
diagrammatic, diffusion, Green’s functions, variational, …

We have used auxiliary-field Monte Carlo methods to study two systems at 
unitarity:

			V0δ(r− r')



	Tc

Pseudogap phase or
non-Fermi liquid above

Fermi liquid behavior
above 	Tc	Tc

Magieriski et al, PRL 2009
Non-zero gap above
(quantum Monte Carlo) 

Wlazłowski et al, PRL 2013
suppression of spin susceptibility above
(quantum Monte Carlo) 

Gaebler et al, Nature Phys 2010
RF spectroscopy experiments 

	Tc
Nascimbene et al, PRL 2011
Spin response compatible with Fermi
Liquid behavior

Enss and Haussmann, PRL 2012
No suppression of spin susceptibility
(Luttinger-Ward theory)

Thermodynamics at unitarity

• Superfluid phase transition below a critical temperature     .	Tc
However, its nature remains incompletely understood. 

Review: E.J. Mueller, arXiv:1701.04838 (2017)

• A pseudogap phase above     was proposed
in the unitary gas, but is still debated both
theoretically and experimentally.       

	Tc

Superfluid “Pseudogap” “Normal”



Finite-temperature auxiliary-field Monte Carlo (AFMC) method

The AFMC method enables calculations in spaces that are many orders 
of magnitude larger than those that can be treated by conventional 
methods.

  
e−βH = D[σ ]∫  GσUσ

where      is a Gaussian weight and       is a propagator of non-interacting 
particles moving in external auxiliary fields  

AFMC is based on the Hubbard-Stratonovich transformation, which 
describes the Gibbs ensemble          at inverse temperature              as a 
path integral over time-dependent auxiliary fields �(⌧)

		β =1/T e−βH

	Gσ
�(⌧)	Uσ

Recent review of AFMC: Y. Alhassid, arXiv:1607.01870, chapter in a book 
(2017)

• Exact up to statistical errors



Thermal expectation values of observables

hÔi = Tr (Ôe��Ĥ)

Tr (e��Ĥ)
=

R
D[�]G�hÔi�Tr Û�R

D[�]G�Tr Û�

hÔi� ⌘ Tr (ÔÛ�)/Tr Û�where

Grand canonical quantities in the integrands can be expressed in terms
of the single-particle representation matrix       of the propagator :

Tr Û� = det(1+U�)

U�

• The integrand reduces to matrix algebra in the single-particle space  (of  
typical dimension ~ 100 - 1000).

Canonical quantities are calculated by an exact particle-number projection

• The high-dimensional integration over      is evaluated by Monte Carlo     
methods.

s



The trapped Fermi gas: a configuration-interaction (CI) approach

We use as a single-particle basis the eigenstates of the harmonic trap 
and construct Slater determinants for the many-particle basis. 

Single-particle basis is truncated to          harmonic oscillator shells.

 nl m

maxN

• Renormalization:       is determined by for each         to reproduce the exact 
ground-state energy of the two-particle system (         in the unitary limit).	 2!ω		V0 maxN

C.N. Gilbreth and Y. Alhassid, Phys. Rev. A 88, 063643 (2013)

The contact interaction                is non-vanishing only in the s-wave channel 			V0δ(r− r')

• The attractive contact interaction has a good Monte Carlo sign for 	N↑ =N↓

accurate calculations⇒



(i) Model-independent pairing gap 

(ii) Heat capacity

Numerical differentiation inside the path integral using the same fields at 
and            , and taking into account correlated errors: reduces the statistical 
errors by an order of magnitude [Liu and Alhassid, PRL 87, 022501 (2001)]

We define the energy-staggering pairing gap by

		Δ gap = [2E(N ,N −1)−E(N ,N)−E(N −1,N −1)]/2

where                    is the energy for       spin-up and      spin-down atoms. 		E(N↑ ,N↓) 	N↑ 	N↓

Thermodynamic observables of the trapped gas 

• Requires the canonical ensemble of fixed particle numbers and uses a 
reprojection method [Alhassid, Liu and Nakada, PRL 83, 4265 (1999)]

	T
	T +dT



(iii) Condensate fraction

Pair correlation matrix for good angular momentum 

Maximal eigenvalue occurs for           and defines the condensate

†( , ) ( ) ( )L LM LMC ab cd A ab A cd­¯ ­¯=< >

  B†

Condensate fraction:   n = 〈B†B〉 / (N / 2)

† ( )LMA ab­¯ is a pair creation operator of particles in orbitals a and b

Þ

Convergence vs. maxN

		L=0

		0≤ 〈B
†B〉 ≤N /2For interacting fermions:

	L

Equivalent to theory of off-diagonal long-range order (C.N. Yang, RMP 1962) 



N = 20 atoms in the spin-balanced
unitary gas

• Clear signatures of the superfluid
phase transition

• However, the gap does not appear to
lead the condensate fraction as 
the temperature decreases.

No clear signature of a pseudogap phase⇒



Homogenous Fermi gas: a lattice approach

We use a discrete spatial lattice with spacing      and linear size

			 
H = !2k2

2m akσ
† akσ +

V0
2(δ x)3kσ∑ ψ xiσ

† ψ xiσ '
† ψ xiσ '

ψ xiσxiσ
∑

where       is a single-particle state with momentum     and spin                          
and         is a creation operator at site     and spin    .  

		k ,σ 	k σ
			ψ xiσ

†

		x i σ

• Our single-particle model space is the complete first Brillouin zone B in  

	δ x

		 
1
V0

= m
4π!2a −

mK3
4π!2δ x 		K3 =2.4427...

The interaction is normalized to reproduce the two-particle scattering
length    on the lattice:

		kc =π /δ x- a cube with side 

For a spherical cutoff with                   , we have  		K3 =2		kc =π /δ x

where (for a cube in    )

	L=Nxδ x

	a

(Werner, Castin, 2012) 

S. Jensen, C.N. Gilbreth, and Y. Alhassid 

The lattice Hamiltonian for a contact interaction has the form 

	k

	k



Thermodynamic observables of the homogenous gas

We carried out AFMC calculation for N=20, 40, 80 and 130 atoms on lattices of 
size                 and      , respectively, so the density remains constant at ~0.06.   	7

3 ,93 ,113 	133

First ab initio calculation of the heat capacity
in good agreement with the MIT experiment
(lambda point).

The thermal energy for                       is in
good agreement with the MIT experiment

(i) Energy

(ii) Heat capacity

		N = 40(Nx = 9)
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Calculated from the largest eigenvalue
of the pair correlation matrix

		
χ s =

2β
V

〈(N↑ −N↓)2〉

Spin-flip excitations require the breaking
of pairs and leads to suppression of
the spin susceptibility. 

(iii) Condensate fraction

(iv) Energy-staggering pairing gap

(v) Static spin susceptibility

Approaches zero at      as the number
of particles and lattice size increase	Tc

			〈ak1σ1
† ak2σ2

† ak4σ4ak3σ3 〉
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Is there a pseudogap phase at unitarity?

We observe no signature of a non-zero
pairing gap above     . 

We observe no significant suppression
of the spin susceptibility above     .

We have compared our AFMC results
(blue solid circles, no cutoff) with 
Bulgac, Drut et al.(red open circles, 
spherical cutoff)

	Tc

	Tc

• In contrast to the Seattle group, we
do not observe clear signatures of
a pseudogap phase.
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Conclusion

• Auxiliary-field Monte Carlo (AFMC) methods enable accurate ab initio 
thermodynamic studies of the unitary Fermi gas.

• Clear signatures of the superfluid phase transition (heat capacity,  
condensate fraction, gap, and spin susceptibility). 

• No clear signatures of a pseudogap phase in the unitary gas.

• Lattice AFMC studies must be carried out in the complete conjugate 
momentum space (no spherical truncation).

• Good agreement with experimental data for the condensate fraction, heat 
capacity, and low-temperature pairing gap.

• More experiments are needed: spin susceptibility and gap vs. temperature.

Outlook

• Redo finite-size scaling (Burovski et al, PRL 2008) with no spherical cutoff.    

• Carry out AFMC calculations for larger lattices and particle number.


