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• Nano-scale superconducting metallic grains (nanoparticles): 
BCS (bulk) regime and fluctuation-dominated regime.

II. Nanoparticles with spin-orbit scattering
Magnetic response of many-particle levels: g-factor and level curvature. 

• Conclusion

• How do spin exchange correlations affect the thermodynamic  
signatures of pairing correlations ? 

I.  Nanoparticles without spin-orbit scattering
Competition between pairing (superconductivity) and spin exchange
correlations (ferromagnetism).

Can we observe pairing correlations in the fluctuation-dominated regime?

• How do pairing correlations affect the g-factor and level curvature
statistics ?



Introduction: nano-scale metallic grains (nanoparticles)
• Discrete energy levels extracted from non-linear 
conductance measurements (Ralph et al).

• Experiments on Al, Co, Au, Cu and Ag grains.

= single-particle level spacing.d

Superconducting grains 

Consider materials that are superconductors in the bulk and
characterized by a pairing gap    .Δ

T << δ

• Recent high-quality data in Au grains.

• Ultra-small (nano-scale) grains: 
probe the quantum regime  

Many-particle spectrum for an
even number of electrons:

<<



(i)  Large grains (~ 10 nm)                 Δ≫ δ

• The Bardeen-Cooper-Schrieffer (BCS) theory is valid (BCS regime)

The pairing gap
is directly observed in
the spectra of such 
grains with even 
number of electrons.

(ii)  Small grains (~ 1 nm)  dD£
• BCS theory breaks down. 

Anderson: “superconductivity would no longer be possible.” 

A mesoscopic regime dominated by large fluctuations of the pairing gap 
(fluctuation-dominated regime).

Can we observe signatures of pairing correlations in this regime despite 
the large fluctuations ?

For a review, see J. von Delft and D.C. Ralph, Phys. Rep 345, 61  (2001).



I. Superconducting nanoparticles without spin-orbit scattering

An isolated chaotic grain with a large number of electrons is described by
the universal Hamiltonian [Kurland, Aleiner, Altshuler, PRB 62, 14886 (2000) ]

H = Σ
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• Ferromagnetic exchange interaction (     is the total spin of the grain)
with exchange constant            .

S
!"

• Discrete single-particle levels       (spin degenerate) and wave functions follow 
random matrix theory (RMT).

P† = ai↑
† ai↓

†

i
∑• Attractive BCS-like pairing interaction (                            is  the pair

operator) with coupling           .0G >

0sJ >

ε i

Competition between pairing and exchange correlations: pairing favors
minimal ground-state spin, while exchange favors maximal spin polarization.

• Corrections                  are small for large Thouless conductance g. ~O(1 / g)



Thermodynamic signatures of the competition between
pairing and exchange correlations 

Method of solution:

K.N. Nesterov and Y.A., PRB 87, 014515 (2013)
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(i) Exact spin projection method

Trace over states with fixed spin S

Reduced pairing Hamiltonian

See Y.A., Liu and Nakada, PRL 99, 162504 (2007).

Trace with fixed spin component       (calculated by Fourier transform) Sz
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(ii) Functional integral representation (Hubbard-Stratonovich) for the reduced
pairing Hamiltonian          :

(iii) Number-parity projection to capture odd-even effects. 

Integrate over        exactly (static path approximation) and over        by saddle
point [i.e., random phase approximation (RPA)] around each static 

0D

BCSH

one-body Hamiltonian in pairing field ( )tD

Δ(τ ) = Δ0 + Δme
iωmτ

m
∑

 Δm

0D

Pη = (1+ηe
iπN ) / 2

describes a projection on even (odd) number of particlesη = 1 (η = −1)

Expand

(      are Matsubara frequencies).ωm

See also G. Falci, A. Fubini, and A. Mastellone, Phys. Rev. B 65, 140507 (2002). 



Heat capacity

Fluctuation-dominated regime: exchange correlations suppress the odd-
even signatures of pairing correlations.

BCS regime: exchange correlations enhance the S-shoulder in the even case. 



Spin susceptibility

• BCS regime: exchange correlations enhance re-entrant effect.

• Fluctuation-dominated regime: exchange correlations enhance
the fluctuations of the susceptibility.



II. Superconducting nanoparticles with spin-orbit scattering

Spin-orbit coupling breaks spin symmetry but preserves time-reversal 
symmetry. 

The exchange interaction is suppressed but the pairing interaction
remains unaffected. 

We studied the response of energy levels in the nanoparticle to external 
magnetic field: linear (g factor) and quadratic (level curvature   ) terms. 

Single-particle levels vs. magnetic field B 

K.N. Nesterov and Y.A., arXiv:1507.01575 (2015)

Brouwer, Waintal and Halperin (2000); Matveev, Glazman and Larkin (2000) 

Splitting of single-electron levels
Theory: P.W. Brouwer, X. Waintal, B.I. Halperin (2000) and K.A. Matveev, L.I. Glazman, A.I. Larkin (2000)

Kramers degeneracy of single-electron levels ϵi is lifted by a magnetic field

Spin contribution to the level splitting:
No spin-orbit scattering

0

Spin is a good quantum number

0

Spin-orbit scattering

Spin is not a good quantum number

Orbital contribution to g-factors may be important in the presence of
spin-orbit scattering

RMT-based models have good agreement with experiment (noble metals)
What happens in the presence of interactions?

⇒
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• Recent advances (use of organic substrates) are providing much better
control over the size and shape the metallic grain.

• Level and g-factor statistics in a gold nanoparticle (non-superconducting) 
are in agreement with the symplectic ensemble of RMT  (Ralph et al, 2008).

background charge (Figure 4a), but these should not affect
our analyses of level statistics that are performed for fixed
VG. Figure 4b shows the magnetic field dependence of the
resonances, which indicates that between 0 and 8.6 T the
levels shift on average by more than the mean level spacing
and typically undergo avoided crossings with neighboring
levels. In this sense, 8.6 T is large enough that time-reversal
symmetry should be strongly broken.

For a chaotic quantum dot with strong spin-orbit coupling,
RMT predicts that the level spacings for B ) 0 should be
described by a Gaussian symplectic ensemble (spin rotation
invariance is preserved) with a transition to a Gaussian
unitary ensemble for large magnetic fields where time
reversal symmetry and spin-rotation symmetry are bro-
ken.22,39 In Figure 5a,b, we plot the integrated histograms of
the energy splittings δ between neighboring resonances
(normalized by the relevant average) for device no. 2 at B
) 0 and B ) 8.6 T. Without any adjustable parameters, we
find good agreement with the predicted level statistics for
the Gaussian symplectic ensemble at B ) 0 and for the
Gaussian unitary ensemble at large field. Quantitatively, we
observe a standard deviation equal to 0.33 for the level-
spacing distribution of δ/〈δ〉 at B ) 0 (GSE predicts [(45π/
128) - 1]0.5 ≈ 0.323) and a standard deviation of 0.46 for
the distribution δ/〈δzs〉 at B ) 8.6 T (GUE predicts [(3π/8)
- 1]0.5≈ 0.422). Here, 〈δ〉 ) 0.23 meV is the mean level
spacing at B ) 0 and 〈δzs〉 ) 0.12 meV is the mean spacing
of Zeeman-split levels at B ) 8.6 T.

The g factors for Zeeman splitting near B ) 0 are listed
to the right of Figure 4b for both the Nf N + 1 resonances
and N + 1 f N transitions in device no. 2. As has been
observed previously for noble-metal nanoparticles,37,38 the
g factors fluctuate significantly from level to level within

the same nanoparticle, in agreement with expectations for
the properties of the highly oscillatory wave functions in a
chaotic quantum dot with spin-orbit coupling.32-35 In the
presence of strong spin-orbit coupling, the g factors are
predicted to have contributions from both orbital and spin
magnetic moments in the form33

Figure 4. (a) Differential conductance at B ) 0 T for device no. 2
(from nominally 10 nm diameter gold colloid), which has asym-
metric tunnel barriers. A resonance for which a one-electron
excitation (one-hole excitation) is the rate-limiting step is marked
by the blue (red) symbol. (b) Magnetic field dependence at VG )
3.552 V. The g factors for Zeeman splitting near B ) 0 are listed
to the right of each level. (c) Energy-level diagrams corresponding
to the tunneling transitions labeled by the red and blue symbols in
panel a.

Figure 5. (a) Symbols: Integrated probability distribution of level
spacings δ at B ) 0 T for device no. 2, taken from Figure 4b and
normalized by the mean level spacing 〈δ〉 ) 0.23 meV. Compari-
sons are made to the level-spacing statistics predicted by the
Gaussian symplectic random matrix ensemble (GSE) and Gaussian
orthogonal ensemble (GOE). (b) Integrated probability distribution
of level spacings at B ) 8.6 T for device no. 2 taken from Figure
4b and normalized by the mean spacing of Zeeman-split levels 〈δzs〉
) 0.12 meV. Comparisons are made to the Gaussian unitary random
matrix ensemble (GUE), the GSE, and a random Poisson distribu-
tion. (c) Integrated probability distribution for the g factors from
device no. 2, compared to the prediction of RMT for strong spin-
orbit coupling with 〈g2〉 ) 0.97. (d) Integrated probability distribu-
tion for the measured level curvatures k for device no. 2, with
comparison to the prediction of RMT for strong spin-orbit coupling
with 〈|k|〉 ) 7.8 µeV/T2. (e) A total of 69 g factors measured from
7 devices, plotted as a function of the local level spacing (see text).
The mean and standard deviation are indicated by the dashed line
and gray background, respectively. (f) Integrated probability
distribution of the g factors from these seven devices with
comparisons to the distributions predicted by RMT32,33 in the limit
of strong spin orbit coupling for 〈g2〉) 0.88 (consistent with ballistic
transport) and 〈g2〉 ) 0.1 (consistent with diffusive transport), as
well as a typical distribution for weaker spin-orbit coupling
corresponding to 〈g〉 ) 1.5.

4510 Nano Lett., Vol. 8, No. 12, 2008

(at B ) 0 T) single-particle levels whose relative energies
do not depend on the charge state of the nanoparticle. In
other words, variations in electron-electron interactions are
sufficiently weak that the interactions can be accounted for
entirely by state-independent charging energies; interactions
do not cause the underlying electronic spectrum to be
scrambled significantly as electrons are added one by one
to the nanoparticle using a gate voltage.22,23 Figure 3a
compares the differential conductance spectrum obtained near
one degeneracy point of device no. 1 (tunneling transitions
between electron numbers N and N + 1, grayscale) with that
obtained from an adjacent degeneracy point in the same
device (tunneling transitions between electron numbers N
+ 1 and N + 2, pink color scale). Except for the lowest-
energy state which is available for tunneling in the pink
spectrum but which is unoccupied by an electron and
therefore does not give a tunneling signal in the grayscale
spectrum, the two spectra match. This is true even though a
charge -e has been added to the nanoparticle and the gate
voltage has been changed by more than 10 V. We believe
that this insensitivity arises because the hardwall confining
potential seen by the electrons in our nanoparticles causes
the volume of the quantum dot to be independent of the
charge number (unlike two-dimensional semiconducting
quantum dots defined by metal gates23 but similar to
semiconductor dots defined by local oxidation24), because
the screening length is much smaller than the gold nano-
particle diameter, and because exchange interactions in the
noble metals are predicted to be very weak.25,26 Energy shifts
and splittings due to state-dependent electron-electron in-
teractions have been observed previously in nanoparticles
with much smaller diameters and in nanoparticles made of
metals with stronger interactions.3,19,27

In Figure 3b we show the magnetic-field dependence of
the tunneling resonances for the N + 1 f N transitions

(grayscale) and the N + 2 f N + 1 transitions (pink color
scale) in device no. 1, corresponding to tunneling of an
electron from occupied states on the nanoparticle to the drain
electrode. Again, except for the first (lowest VSD) transition
in the N + 2 f N + 1 spectrum at the top of Figure 3b, the
spectra are identical. The unmatched state corresponds to
an electron tunneling out of a state which is occupied for N
+ 2 electrons, but not N + 1, and therefore it shows
occupation of the highest occupied electron orbital state by
a single electron. As a function of applied magnetic field,
all of the occupied states below this singly occupied state
exhibit Zeeman splitting into two levels, demonstrating that
they are doubly degenerate at B ) 0 as required by Kramers
degeneracy in a nonmagnetic nanoparticle. We can rule out
the presence of any magnetism in the gold nanoparticles also
from the fact that we observe that as electrons are added to
our nanoparticles by varying gate voltage they always fill
each orbital state with two electrons before occupying the
next higher orbital (not shown), and from the absence of
any spin blockade effects near zero bias.28 The absence of
magnetism is consistent with the predictions that the
exchange interaction in gold is very weak.25,26 Nevertheless,
magnetization measurements of thiol-capped gold nanopar-
ticles have previously suggested the presence of some
magnetic character in that system.29

As we analyze in more detail below, the magnitudes of
the Zeeman splittings in Figure 3b correspond to effective g
factors less than the free-electron value of 2 for each state.
In addition, neighboring levels exhibit avoided crossings,
rather than simple crossings, as a function of B. Both effects
are due to spin-orbit coupling25,30-35 and have been observed
previously in other metal quantum dots.3,36-38

(iii) The large number of excited states that we can
measure in the chemically formed nanoparticles enables
comparisons to the statistical predictions of random matrix
theory (RMT) for the distributions of level spacings, for the
g factors associated with Zeeman splitting, g ) (εv - εV)/
(µBB), and for the level curvatures as a function of B, k )
(εv + εV - 2ε0)/B2. Here εv and εV are the Zeeman-split levels
of a Kramers doublet, ε0 is the energy at which they are
degenerate at B ) 0, and µB is the Bohr magneton. Both the
g factors and level curvatures are evaluated for B sufficiently
large to resolve the Zeeman splitting, but small enough to
avoid level crossings where the splitting becomes nonlinear.
For convenience in making comparisons to the RMT
predictions, we use a nanoparticle whose tunnel couplings
to the source and drain electrodes are asymmetric, so that
the plot of dI/dVSD versus VG and VSD (Figure 4a) contains
primarily resonances with just one sign of slope, correspond-
ing to tunneling transitions across just the higher-resistance
tunnel junction. In this spectrum only the N f N + 1
resonances (“one-electron excitations”) are visible at negative
VSD and only the N + 1 f N transitions (“one-hole
excitations”) at positive VSD, so that in evaluating the level
statistics there is no need to sort out overlapping spectra
corresponding to different numbers of electrons. We note
that sweeping VG can sometimes cause minor glitches in the
evolution of the energy levels due to small changes in the

Figure 3. (a) Differential conductance obtained from N f N + 1
and N + 1f N electron-number tunneling transitions (grayscale),
overlaid with the conductance obtained from N + 1 f N + 2 and
N + 2 f N + 1 transitions in the same device (pink) (device no.
1). Both spectra are for B ) 0 and electron temperature e 90 mK.
(b) Magnetic field dependence of these two spectra for constant
VG, obtained near the two degeneracy points in panel a. The ground-
state to ground-state transition for N + 2 f N + 1 at the top right
shows only one state of a Kramer’s doublet, demonstrating that N
+ 2 is odd.1

Nano Lett., Vol. 8, No. 12, 2008 4509



g factor and level curvature in the presence of interactions 

Assume one-bottleneck geometry: 
decay into the ground state before
another electron is added.

dI/dV curves in tunneling spectroscopy experiments measure the energy
differences         between many-particle states with N+1 and N electrons

For tunneling into the even ground state ΔEΩ = EΩ
N+1 − E0

N

Many-body levels of the odd nanoparticle are doubly degenerate (Kramers’
degeneracy), and they split in a magnetic field

ΔE = ΔE(0)± 1
2
gµBB + 1

2
κB2

and    reduce to the single-particle level quantities in the  non-interacting 
limit (i.e., constant-interaction model).

ΔEΩ

Magnetic-field dependence of energy levels of superconducting
nanoparticles with spin-orbit scattering
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We study the response of discrete energy levels of ultrasmall metallic grains to an external magnetic field in the presence of both spin-orbit scattering
and superconducting correlations. We concentrate on the linear and quadratic in magnetic field corrections to energies, which are parametrized,
respectively, by g-factors and level curvatures. Both corrections fluctuate from level to level in the presence of spin-orbit scattering. We show that
the distribution of fluctuating g-factors is not a↵ected by pairing correlations, while the distribution of level curvatures is sensitive to them even in
the smallest grains, in which the mean single-particle level spacing is greater than the pairing gap. Therefore, level curvatures are a good tool to
detect pairing correlations in tunneling spectroscopy experiments.

Ultrasmall metallic grains

Single-electron-tunneling spectroscopy since mid-90s:

D.C. Ralph, C.T. Black, and M. Tinkham (1997)

discrete levels

IMeasurement of discrete energy levels
I Large mean single-particle level spacing: � ⇠ 0.02� 0.3 meV
I Experiments on Al, Co, Al+Au, Au, Cu, Ag particles
IRecent advances: high-quality spectra of Au particles
(D.C.Ralph’s group, 2008)

Chaotic grains:

IAssume the classical single-particle dynamics
are chaotic

I Statistical approach
IMesoscopic fluctuations
I Single-particle spectrum is described by
random matrix theory (RMT)

Splitting of single-electron levels:

Theory: P.W. Brouwer, X. Waintal, B.I. Halperin (2000)

and K.A. Matveev, L.I. Glazman, A.I. Larkin (2000)

Kramers degeneracy of single-electron levels ✏i is lifted by a magnetic
field:

No spin-orbit scattering

0

Spin is a good quantum number

0

Spin-orbit scattering

Spin is not a good quantum number

RMT-based models have good agreement with experiment (noble
metals)

What happens in the presence of interactions?

Generic interaction: universal Hamiltonian

I.L. Kurland, I.L. Aleiner, B.L. Altshuler (2000)

I.L. Aleiner, P.W. Brouwer, L.I. Glazman (2002)

Valid in the limit gTh = ETh/� � 1 (ETh is the Thouless energy)
Describes a generic chaotic or weakly disordered system at low
energies

average interaction (universal) fluctuating part

our model 
(for fixed particle number)

↵ = 1, 2 are degenerate single-particle orbitals related by time reversal

Superconducting grains

IMaterial is superconducting in the bulk
I Characterized by the bulk pairing gap �

Many-electron spectrum for even electron number:

I�/� ⇡ # of pair-correlated single-electron levels
IWhat happens to pairing correlations when � > �?

10
nanoparticles

Definitions

How to define g-factor and level curvature in the
presence of interactions?

Tunneling spectroscopy experiments:
Each peak in dI/dV (V ) corresponds to a transition |⇥iN ! |⇥0iN 0

between two many-electron states with di↵erent particle numbers
|N �N 0| = 1. The di↵erence EN 0

⇥0 � EN
⇥ between many-electron

energies of these states is extracted from the peak position.

Constant-interaction model:

- interaction is given by EC(N̂ �N0)2

- possible |⇥iN and |⇥0iN 0 di↵er by the
occupation of one single-particle
orbital k
- �E = EN 0

⇥0 � EN
⇥ = ✏k + const.

- �E(B) = �E(0)± 1
2gkµBB + 1

2kB2 +O(B3)
- single-particle quantities are measured

One-bottleneck geometry:

so
ur
ce

dr
aingrain

Tunneling onto an even ground state |0iNe:

�E⌦,0 = ENe+1
⌦ � ENe

0

General definition of g-factor g and level curvature :

�E⌦,0(B) = �E⌦,0(0)±
1

2
gµBB +

1

2
B2 +O(B3)

g and  reduce to single-particle quantities in the noninteracting case

Exchange interaction: D. Gorokhov, P.Brouwer (2003)
- suppressed when spin-orbit scattering is strong
- only pairing correlations survive

Eigenstates of the pairing model

Ĥ =
X

i,↵=1,2

✏ia
†
i↵ai↵ �GP̂ †P̂ (�BM̂z )

|0iNe ! |⌦iNe+1 , �E⌦,0 = ENe+1
⌦ � ENe

0

even
ground
state

odd state
after
tunneling

no interaction pairing interaction

nondegenerate

Kramers doublets,
split in a magnetic field

blocked orbital

single-particle energy
is measured in the

noninteracting limit

Selection rule: one singly occupied (blocked) orbital in the odd state
The di↵erence �E⌦,0 splits in a magnetic field because of the singly
occupied orbital in the odd state. However, in general, the
magnetic-field dependence of this di↵erence comes from the
magnetic-field dependence of both ENe

0 and ENe+1
⌦ .

g-factors

Linear corrections to energies ENe
0 and ENe+1

⌦ .
Even ground state:

(because of time-reversal
symmetry)

Odd state:

single-particle ) g = gs�p
k

(because of time-reversal symmetry and the blocking e↵ect)

The measured g-factor reduces to the single-particle g-factor of the
odd-state blocked orbital
) the measured distribution of g-factors is not a↵ected by pairing
correlations
) can be used to probe importance of correlations beyond the
pairing interaction

Level curvatures

Quadratic corrections to energies ENe
0 and ENe+1

⌦ .
Consider tunneling between two ground states
[the first peak in dI/dV (V ) characteristics]

ENe+1
0 (B)� ENe

0 (B) = const.± 1

2
gµBB +

1

2
B2 + . . .

 =
0X

⌦0

���
⌦
⌦0
��M̂z

��0
↵
Ne+1

���
2

ENe+1
0 � ENe+1

⌦0

�
0X

⇥0

���
⌦
⇥0
��M̂z

��0
↵
Ne

���
2

ENe
0 � ENe

⇥0

= odd
0 � even

0 (1)

(second-order perturbation theory)

Noninteracting limit:
 reduces to the single-particle
curvature

k = 2
X

k06=k

|Mz
k1,k01|2 + |Mz

k1,k02|2

✏k � ✏k0

(Mz
k↵,k0↵0 is the single-electron matrix element)

The distribution of  is symmetric with zero average

Left tail:
|✏k � ✏k+1| ⌧ �
|ENe+1

0 � ENe+1
⌦0 | ⌧ �

Right tail:
|✏k � ✏k�1| ⌧ �
|ENe

0 � ENe
⇥0 | ⌧ �

Pairing interaction with �/� > 1:
The denominators in the odd and even contributions in Eq. (1) are
a↵ected di↵erently.

Negative (odd) contribution
- no excitation gap
- |ENe+1

0 � ENe+1
⌦0 | can be small

- enhanced

Positive (even) contribution
- excitation gap
- |ENe

0 � ENe
⇥0 | & 2�

- suppressed

Therefore, pairing correlations are expected to make the distribution
asymmetric and shift it to negative values.

Numerical simulations

I Single-particle eigenenergies and eigenstates follow Gaussian
symplectic ensemble of RMT

IOrbital contribution to magnetization is neglected: M̂z = 2µBŜz

I Exact calculations for small model spaces (up to 13 single-particle
orbitals) because of the significant computational e↵ort

I Calculations based on the generalized variational BCS approach for
larger model spaces (up to 200 single-particle orbitals)

0

0.2
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0.6

-15 -10 -5 0 5
κ/d

0

0

0.2

0.4

0.6

P
(κ
/d

0
)

exact

BCS

∆/δ = 0.0∆/δ = 0.4

∆/δ = 1.0

∆/δ = 3.0

(d0 is the midspread or the middle 50% of the single-particle
distribution)
) Level curvature is highly sensitive to pairing correlations!

Conclusions

I g-factors are independent of the strength of the pairing interaction
I Level curvatures are highly sensitive to pairing correlations even in
the fluctuation-dominated regime (�/� . 1)

I Level curvatures can be used as a practical tool to detect pairing
correlations in a spectroscopy experiment
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H = Σ
i,α
ε iaiα

† aiα −GP
†P − BMz

Universal Hamiltonian with strong spin-orbit scattering

where α =1,2 is the Kramers doublet with energy       and P† = ai1
†ai2

†

i
∑

Even ground state

Odd state

blocked orbital

ε i

(a) (b)

(c) (d)



For the even ground state:

by time-reversal symmetry
(      is odd under time reversal)

For the odd state:

since                                      by time-reversal symmetry 

The many-particle g factor reduces to the single-particle g factor of the 
odd-particle blocked orbital. 

g-factor distributions are not affected by pairing correlations.

g-factor (linear correction)

Mm1,m1
z +Mm2,m2

z = 0
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Single-electron-tunneling spectroscopy since mid-90s:

D.C. Ralph, C.T. Black, and M. Tinkham (1997)

discrete levels

IMeasurement of discrete energy levels
I Large mean single-particle level spacing: � ⇠ 0.02� 0.3 meV
I Experiments on Al, Co, Al+Au, Au, Cu, Ag particles
IRecent advances: high-quality spectra of Au particles
(D.C.Ralph’s group, 2008)

Chaotic grains:

IAssume the classical single-particle dynamics
are chaotic

I Statistical approach
IMesoscopic fluctuations
I Single-particle spectrum is described by
random matrix theory (RMT)

Splitting of single-electron levels:

Theory: P.W. Brouwer, X. Waintal, B.I. Halperin (2000)

and K.A. Matveev, L.I. Glazman, A.I. Larkin (2000)

Kramers degeneracy of single-electron levels ✏i is lifted by a magnetic
field:

No spin-orbit scattering

0

Spin is a good quantum number

0

Spin-orbit scattering

Spin is not a good quantum number

RMT-based models have good agreement with experiment (noble
metals)

What happens in the presence of interactions?

Generic interaction: universal Hamiltonian

I.L. Kurland, I.L. Aleiner, B.L. Altshuler (2000)

I.L. Aleiner, P.W. Brouwer, L.I. Glazman (2002)

Valid in the limit gTh = ETh/� � 1 (ETh is the Thouless energy)
Describes a generic chaotic or weakly disordered system at low
energies

average interaction (universal) fluctuating part

our model 
(for fixed particle number)

↵ = 1, 2 are degenerate single-particle orbitals related by time reversal

Superconducting grains

IMaterial is superconducting in the bulk
I Characterized by the bulk pairing gap �

Many-electron spectrum for even electron number:
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Definitions

How to define g-factor and level curvature in the
presence of interactions?

Tunneling spectroscopy experiments:
Each peak in dI/dV (V ) corresponds to a transition |⇥iN ! |⇥0iN 0

between two many-electron states with di↵erent particle numbers
|N �N 0| = 1. The di↵erence EN 0

⇥0 � EN
⇥ between many-electron

energies of these states is extracted from the peak position.

Constant-interaction model:

- interaction is given by EC(N̂ �N0)2

- possible |⇥iN and |⇥0iN 0 di↵er by the
occupation of one single-particle
orbital k
- �E = EN 0

⇥0 � EN
⇥ = ✏k + const.

- �E(B) = �E(0)± 1
2gkµBB + 1

2kB2 +O(B3)
- single-particle quantities are measured

One-bottleneck geometry:
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dr
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Tunneling onto an even ground state |0iNe:

�E⌦,0 = ENe+1
⌦ � ENe

0

General definition of g-factor g and level curvature :

�E⌦,0(B) = �E⌦,0(0)±
1

2
gµBB +
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2
B2 +O(B3)

g and  reduce to single-particle quantities in the noninteracting case

Exchange interaction: D. Gorokhov, P.Brouwer (2003)
- suppressed when spin-orbit scattering is strong
- only pairing correlations survive

Eigenstates of the pairing model

Ĥ =
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Selection rule: one singly occupied (blocked) orbital in the odd state
The di↵erence �E⌦,0 splits in a magnetic field because of the singly
occupied orbital in the odd state. However, in general, the
magnetic-field dependence of this di↵erence comes from the
magnetic-field dependence of both ENe

0 and ENe+1
⌦ .

g-factors

Linear corrections to energies ENe
0 and ENe+1

⌦ .
Even ground state:

(because of time-reversal
symmetry)

Odd state:

single-particle ) g = gs�p
k

(because of time-reversal symmetry and the blocking e↵ect)

The measured g-factor reduces to the single-particle g-factor of the
odd-state blocked orbital
) the measured distribution of g-factors is not a↵ected by pairing
correlations
) can be used to probe importance of correlations beyond the
pairing interaction

Level curvatures

Quadratic corrections to energies ENe
0 and ENe+1

⌦ .
Consider tunneling between two ground states
[the first peak in dI/dV (V ) characteristics]
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Noninteracting limit:
 reduces to the single-particle
curvature

k = 2
X
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|Mz
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k1,k02|2
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(Mz
k↵,k0↵0 is the single-electron matrix element)
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Pairing interaction with �/� > 1:
The denominators in the odd and even contributions in Eq. (1) are
a↵ected di↵erently.

Negative (odd) contribution
- no excitation gap
- |ENe+1

0 � ENe+1
⌦0 | can be small

- enhanced

Positive (even) contribution
- excitation gap
- |ENe

0 � ENe
⇥0 | & 2�

- suppressed

Therefore, pairing correlations are expected to make the distribution
asymmetric and shift it to negative values.

Numerical simulations

I Single-particle eigenenergies and eigenstates follow Gaussian
symplectic ensemble of RMT

IOrbital contribution to magnetization is neglected: M̂z = 2µBŜz

I Exact calculations for small model spaces (up to 13 single-particle
orbitals) because of the significant computational e↵ort

I Calculations based on the generalized variational BCS approach for
larger model spaces (up to 200 single-particle orbitals)
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Conclusions

I g-factors are independent of the strength of the pairing interaction
I Level curvatures are highly sensitive to pairing correlations even in
the fluctuation-dominated regime (�/� . 1)

I Level curvatures can be used as a practical tool to detect pairing
correlations in a spectroscopy experiment
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the distribution of fluctuating g-factors is not a↵ected by pairing correlations, while the distribution of level curvatures is sensitive to them even in
the smallest grains, in which the mean single-particle level spacing is greater than the pairing gap. Therefore, level curvatures are a good tool to
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and K.A. Matveev, L.I. Glazman, A.I. Larkin (2000)

Kramers degeneracy of single-electron levels ✏i is lifted by a magnetic
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Generic interaction: universal Hamiltonian
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I.L. Aleiner, P.W. Brouwer, L.I. Glazman (2002)

Valid in the limit gTh = ETh/� � 1 (ETh is the Thouless energy)
Describes a generic chaotic or weakly disordered system at low
energies

average interaction (universal) fluctuating part

our model 
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↵ = 1, 2 are degenerate single-particle orbitals related by time reversal

Superconducting grains
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I Characterized by the bulk pairing gap �
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|N �N 0| = 1. The di↵erence EN 0
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⇥ between many-electron

energies of these states is extracted from the peak position.
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- possible |⇥iN and |⇥0iN 0 di↵er by the
occupation of one single-particle
orbital k
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⇥ = ✏k + const.
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- single-particle quantities are measured

One-bottleneck geometry:
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g and  reduce to single-particle quantities in the noninteracting case
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- only pairing correlations survive
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Selection rule: one singly occupied (blocked) orbital in the odd state
The di↵erence �E⌦,0 splits in a magnetic field because of the singly
occupied orbital in the odd state. However, in general, the
magnetic-field dependence of this di↵erence comes from the
magnetic-field dependence of both ENe

0 and ENe+1
⌦ .

g-factors

Linear corrections to energies ENe
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Even ground state:

(because of time-reversal
symmetry)

Odd state:

single-particle ) g = gs�p
k

(because of time-reversal symmetry and the blocking e↵ect)

The measured g-factor reduces to the single-particle g-factor of the
odd-state blocked orbital
) the measured distribution of g-factors is not a↵ected by pairing
correlations
) can be used to probe importance of correlations beyond the
pairing interaction

Level curvatures

Quadratic corrections to energies ENe
0 and ENe+1

⌦ .
Consider tunneling between two ground states
[the first peak in dI/dV (V ) characteristics]
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curvature
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Pairing interaction with �/� > 1:
The denominators in the odd and even contributions in Eq. (1) are
a↵ected di↵erently.

Negative (odd) contribution
- no excitation gap
- |ENe+1

0 � ENe+1
⌦0 | can be small

- enhanced

Positive (even) contribution
- excitation gap
- |ENe
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- suppressed

Therefore, pairing correlations are expected to make the distribution
asymmetric and shift it to negative values.

Numerical simulations

I Single-particle eigenenergies and eigenstates follow Gaussian
symplectic ensemble of RMT

IOrbital contribution to magnetization is neglected: M̂z = 2µBŜz

I Exact calculations for small model spaces (up to 13 single-particle
orbitals) because of the significant computational e↵ort

I Calculations based on the generalized variational BCS approach for
larger model spaces (up to 200 single-particle orbitals)
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Level curvature κ (quadratic correction)

In second-order perturbation theory (even ground state to odd ground state)

In the CI model (i.e., non-interacting), κ reduces to the single-level curvature

The single-level curvature distribution
is symmetric around κ=0.
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detect pairing correlations in tunneling spectroscopy experiments.

Ultrasmall metallic grains

Single-electron-tunneling spectroscopy since mid-90s:

D.C. Ralph, C.T. Black, and M. Tinkham (1997)

discrete levels

IMeasurement of discrete energy levels
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I Experiments on Al, Co, Al+Au, Au, Cu, Ag particles
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IAssume the classical single-particle dynamics
are chaotic

I Statistical approach
IMesoscopic fluctuations
I Single-particle spectrum is described by
random matrix theory (RMT)

Splitting of single-electron levels:

Theory: P.W. Brouwer, X. Waintal, B.I. Halperin (2000)

and K.A. Matveev, L.I. Glazman, A.I. Larkin (2000)

Kramers degeneracy of single-electron levels ✏i is lifted by a magnetic
field:

No spin-orbit scattering
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Spin is a good quantum number
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Spin-orbit scattering

Spin is not a good quantum number

RMT-based models have good agreement with experiment (noble
metals)

What happens in the presence of interactions?

Generic interaction: universal Hamiltonian

I.L. Kurland, I.L. Aleiner, B.L. Altshuler (2000)

I.L. Aleiner, P.W. Brouwer, L.I. Glazman (2002)

Valid in the limit gTh = ETh/� � 1 (ETh is the Thouless energy)
Describes a generic chaotic or weakly disordered system at low
energies

average interaction (universal) fluctuating part

our model 
(for fixed particle number)

↵ = 1, 2 are degenerate single-particle orbitals related by time reversal

Superconducting grains

IMaterial is superconducting in the bulk
I Characterized by the bulk pairing gap �

Many-electron spectrum for even electron number:

I�/� ⇡ # of pair-correlated single-electron levels
IWhat happens to pairing correlations when � > �?
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presence of interactions?
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between two many-electron states with di↵erent particle numbers
|N �N 0| = 1. The di↵erence EN 0

⇥0 � EN
⇥ between many-electron

energies of these states is extracted from the peak position.

Constant-interaction model:

- interaction is given by EC(N̂ �N0)2

- possible |⇥iN and |⇥0iN 0 di↵er by the
occupation of one single-particle
orbital k
- �E = EN 0
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- �E(B) = �E(0)± 1
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One-bottleneck geometry:
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g and  reduce to single-particle quantities in the noninteracting case

Exchange interaction: D. Gorokhov, P.Brouwer (2003)
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The di↵erence �E⌦,0 splits in a magnetic field because of the singly
occupied orbital in the odd state. However, in general, the
magnetic-field dependence of this di↵erence comes from the
magnetic-field dependence of both ENe
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g-factors

Linear corrections to energies ENe
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Even ground state:
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symmetry)

Odd state:
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(because of time-reversal symmetry and the blocking e↵ect)

The measured g-factor reduces to the single-particle g-factor of the
odd-state blocked orbital
) the measured distribution of g-factors is not a↵ected by pairing
correlations
) can be used to probe importance of correlations beyond the
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Level curvatures

Quadratic corrections to energies ENe
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Therefore, pairing correlations are expected to make the distribution
asymmetric and shift it to negative values.

Numerical simulations

I Single-particle eigenenergies and eigenstates follow Gaussian
symplectic ensemble of RMT

IOrbital contribution to magnetization is neglected: M̂z = 2µBŜz

I Exact calculations for small model spaces (up to 13 single-particle
orbitals) because of the significant computational e↵ort

I Calculations based on the generalized variational BCS approach for
larger model spaces (up to 200 single-particle orbitals)
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RMT-based models have good agreement with experiment (noble
metals)

What happens in the presence of interactions?

Generic interaction: universal Hamiltonian

I.L. Kurland, I.L. Aleiner, B.L. Altshuler (2000)

I.L. Aleiner, P.W. Brouwer, L.I. Glazman (2002)

Valid in the limit gTh = ETh/� � 1 (ETh is the Thouless energy)
Describes a generic chaotic or weakly disordered system at low
energies

average interaction (universal) fluctuating part

our model 
(for fixed particle number)

↵ = 1, 2 are degenerate single-particle orbitals related by time reversal

Superconducting grains

IMaterial is superconducting in the bulk
I Characterized by the bulk pairing gap �

Many-electron spectrum for even electron number:

I�/� ⇡ # of pair-correlated single-electron levels
IWhat happens to pairing correlations when � > �?
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Definitions

How to define g-factor and level curvature in the
presence of interactions?

Tunneling spectroscopy experiments:
Each peak in dI/dV (V ) corresponds to a transition |⇥iN ! |⇥0iN 0

between two many-electron states with di↵erent particle numbers
|N �N 0| = 1. The di↵erence EN 0

⇥0 � EN
⇥ between many-electron

energies of these states is extracted from the peak position.

Constant-interaction model:

- interaction is given by EC(N̂ �N0)2

- possible |⇥iN and |⇥0iN 0 di↵er by the
occupation of one single-particle
orbital k
- �E = EN 0

⇥0 � EN
⇥ = ✏k + const.

- �E(B) = �E(0)± 1
2gkµBB + 1

2kB2 +O(B3)
- single-particle quantities are measured

One-bottleneck geometry:

so
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dr
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Tunneling onto an even ground state |0iNe:

�E⌦,0 = ENe+1
⌦ � ENe

0

General definition of g-factor g and level curvature :

�E⌦,0(B) = �E⌦,0(0)±
1

2
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2
B2 +O(B3)

g and  reduce to single-particle quantities in the noninteracting case

Exchange interaction: D. Gorokhov, P.Brouwer (2003)
- suppressed when spin-orbit scattering is strong
- only pairing correlations survive

Eigenstates of the pairing model

Ĥ =
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Selection rule: one singly occupied (blocked) orbital in the odd state
The di↵erence �E⌦,0 splits in a magnetic field because of the singly
occupied orbital in the odd state. However, in general, the
magnetic-field dependence of this di↵erence comes from the
magnetic-field dependence of both ENe

0 and ENe+1
⌦ .

g-factors

Linear corrections to energies ENe
0 and ENe+1

⌦ .
Even ground state:

(because of time-reversal
symmetry)

Odd state:

single-particle ) g = gs�p
k

(because of time-reversal symmetry and the blocking e↵ect)

The measured g-factor reduces to the single-particle g-factor of the
odd-state blocked orbital
) the measured distribution of g-factors is not a↵ected by pairing
correlations
) can be used to probe importance of correlations beyond the
pairing interaction

Level curvatures

Quadratic corrections to energies ENe
0 and ENe+1

⌦ .
Consider tunneling between two ground states
[the first peak in dI/dV (V ) characteristics]
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Noninteracting limit:
 reduces to the single-particle
curvature

k = 2
X
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|Mz
k1,k01|2 + |Mz

k1,k02|2

✏k � ✏k0

(Mz
k↵,k0↵0 is the single-electron matrix element)

The distribution of  is symmetric with zero average
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Pairing interaction with �/� > 1:
The denominators in the odd and even contributions in Eq. (1) are
a↵ected di↵erently.

Negative (odd) contribution
- no excitation gap
- |ENe+1

0 � ENe+1
⌦0 | can be small

- enhanced

Positive (even) contribution
- excitation gap
- |ENe

0 � ENe
⇥0 | & 2�

- suppressed

Therefore, pairing correlations are expected to make the distribution
asymmetric and shift it to negative values.

Numerical simulations

I Single-particle eigenenergies and eigenstates follow Gaussian
symplectic ensemble of RMT

IOrbital contribution to magnetization is neglected: M̂z = 2µBŜz

I Exact calculations for small model spaces (up to 13 single-particle
orbitals) because of the significant computational e↵ort

I Calculations based on the generalized variational BCS approach for
larger model spaces (up to 200 single-particle orbitals)
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Conclusions

I g-factors are independent of the strength of the pairing interaction
I Level curvatures are highly sensitive to pairing correlations even in
the fluctuation-dominated regime (�/� . 1)

I Level curvatures can be used as a practical tool to detect pairing
correlations in a spectroscopy experiment
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We study the response of discrete energy levels of ultrasmall metallic grains to an external magnetic field in the presence of both spin-orbit scattering
and superconducting correlations. We concentrate on the linear and quadratic in magnetic field corrections to energies, which are parametrized,
respectively, by g-factors and level curvatures. Both corrections fluctuate from level to level in the presence of spin-orbit scattering. We show that
the distribution of fluctuating g-factors is not a↵ected by pairing correlations, while the distribution of level curvatures is sensitive to them even in
the smallest grains, in which the mean single-particle level spacing is greater than the pairing gap. Therefore, level curvatures are a good tool to
detect pairing correlations in tunneling spectroscopy experiments.
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Splitting of single-electron levels:

Theory: P.W. Brouwer, X. Waintal, B.I. Halperin (2000)

and K.A. Matveev, L.I. Glazman, A.I. Larkin (2000)

Kramers degeneracy of single-electron levels ✏i is lifted by a magnetic
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No spin-orbit scattering
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RMT-based models have good agreement with experiment (noble
metals)
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Generic interaction: universal Hamiltonian

I.L. Kurland, I.L. Aleiner, B.L. Altshuler (2000)

I.L. Aleiner, P.W. Brouwer, L.I. Glazman (2002)

Valid in the limit gTh = ETh/� � 1 (ETh is the Thouless energy)
Describes a generic chaotic or weakly disordered system at low
energies

average interaction (universal) fluctuating part

our model 
(for fixed particle number)

↵ = 1, 2 are degenerate single-particle orbitals related by time reversal

Superconducting grains

IMaterial is superconducting in the bulk
I Characterized by the bulk pairing gap �

Many-electron spectrum for even electron number:

I�/� ⇡ # of pair-correlated single-electron levels
IWhat happens to pairing correlations when � > �?
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How to define g-factor and level curvature in the
presence of interactions?

Tunneling spectroscopy experiments:
Each peak in dI/dV (V ) corresponds to a transition |⇥iN ! |⇥0iN 0

between two many-electron states with di↵erent particle numbers
|N �N 0| = 1. The di↵erence EN 0

⇥0 � EN
⇥ between many-electron

energies of these states is extracted from the peak position.

Constant-interaction model:

- interaction is given by EC(N̂ �N0)2

- possible |⇥iN and |⇥0iN 0 di↵er by the
occupation of one single-particle
orbital k
- �E = EN 0

⇥0 � EN
⇥ = ✏k + const.

- �E(B) = �E(0)± 1
2gkµBB + 1

2kB2 +O(B3)
- single-particle quantities are measured

One-bottleneck geometry:
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Tunneling onto an even ground state |0iNe:

�E⌦,0 = ENe+1
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General definition of g-factor g and level curvature :

�E⌦,0(B) = �E⌦,0(0)±
1

2
gµBB +

1

2
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g and  reduce to single-particle quantities in the noninteracting case

Exchange interaction: D. Gorokhov, P.Brouwer (2003)
- suppressed when spin-orbit scattering is strong
- only pairing correlations survive

Eigenstates of the pairing model
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Selection rule: one singly occupied (blocked) orbital in the odd state
The di↵erence �E⌦,0 splits in a magnetic field because of the singly
occupied orbital in the odd state. However, in general, the
magnetic-field dependence of this di↵erence comes from the
magnetic-field dependence of both ENe

0 and ENe+1
⌦ .

g-factors

Linear corrections to energies ENe
0 and ENe+1

⌦ .
Even ground state:

(because of time-reversal
symmetry)

Odd state:

single-particle ) g = gs�p
k

(because of time-reversal symmetry and the blocking e↵ect)

The measured g-factor reduces to the single-particle g-factor of the
odd-state blocked orbital
) the measured distribution of g-factors is not a↵ected by pairing
correlations
) can be used to probe importance of correlations beyond the
pairing interaction

Level curvatures

Quadratic corrections to energies ENe
0 and ENe+1

⌦ .
Consider tunneling between two ground states
[the first peak in dI/dV (V ) characteristics]
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Pairing interaction with �/� > 1:
The denominators in the odd and even contributions in Eq. (1) are
a↵ected di↵erently.

Negative (odd) contribution
- no excitation gap
- |ENe+1

0 � ENe+1
⌦0 | can be small

- enhanced

Positive (even) contribution
- excitation gap
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- suppressed

Therefore, pairing correlations are expected to make the distribution
asymmetric and shift it to negative values.

Numerical simulations

I Single-particle eigenenergies and eigenstates follow Gaussian
symplectic ensemble of RMT

IOrbital contribution to magnetization is neglected: M̂z = 2µBŜz

I Exact calculations for small model spaces (up to 13 single-particle
orbitals) because of the significant computational e↵ort

I Calculations based on the generalized variational BCS approach for
larger model spaces (up to 200 single-particle orbitals)
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Conclusions

I g-factors are independent of the strength of the pairing interaction
I Level curvatures are highly sensitive to pairing correlations even in
the fluctuation-dominated regime (�/� . 1)

I Level curvatures can be used as a practical tool to detect pairing
correlations in a spectroscopy experiment
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κ in the presence of pairing correlations with            

Positive contributions to κ come from the even curvature:

| E0
Ne − EΘ '

Ne | ≥ 2Δ - there is a pairing gap in the even grain
and κ is suppressed.

Negative contributions to κ come from the odd curvature:

| E0
Ne+1 − EΩ '

Ne+1 | can be small (no pairing gap in the odd grain) 
and κ is enhanced

The curvature distribution is asymmetric and shifted towards negative
values 

Δ > δ
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We study the response of discrete energy levels of ultrasmall metallic grains to an external magnetic field in the presence of both spin-orbit scattering
and superconducting correlations. We concentrate on the linear and quadratic in magnetic field corrections to energies, which are parametrized,
respectively, by g-factors and level curvatures. Both corrections fluctuate from level to level in the presence of spin-orbit scattering. We show that
the distribution of fluctuating g-factors is not a↵ected by pairing correlations, while the distribution of level curvatures is sensitive to them even in
the smallest grains, in which the mean single-particle level spacing is greater than the pairing gap. Therefore, level curvatures are a good tool to
detect pairing correlations in tunneling spectroscopy experiments.
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discrete levels

IMeasurement of discrete energy levels
I Large mean single-particle level spacing: � ⇠ 0.02� 0.3 meV
I Experiments on Al, Co, Al+Au, Au, Cu, Ag particles
IRecent advances: high-quality spectra of Au particles
(D.C.Ralph’s group, 2008)

Chaotic grains:

IAssume the classical single-particle dynamics
are chaotic

I Statistical approach
IMesoscopic fluctuations
I Single-particle spectrum is described by
random matrix theory (RMT)

Splitting of single-electron levels:

Theory: P.W. Brouwer, X. Waintal, B.I. Halperin (2000)

and K.A. Matveev, L.I. Glazman, A.I. Larkin (2000)

Kramers degeneracy of single-electron levels ✏i is lifted by a magnetic
field:

No spin-orbit scattering
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Spin is a good quantum number
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Spin-orbit scattering

Spin is not a good quantum number

RMT-based models have good agreement with experiment (noble
metals)

What happens in the presence of interactions?

Generic interaction: universal Hamiltonian

I.L. Kurland, I.L. Aleiner, B.L. Altshuler (2000)

I.L. Aleiner, P.W. Brouwer, L.I. Glazman (2002)

Valid in the limit gTh = ETh/� � 1 (ETh is the Thouless energy)
Describes a generic chaotic or weakly disordered system at low
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average interaction (universal) fluctuating part
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(for fixed particle number)

↵ = 1, 2 are degenerate single-particle orbitals related by time reversal

Superconducting grains
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I Characterized by the bulk pairing gap �
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How to define g-factor and level curvature in the
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Each peak in dI/dV (V ) corresponds to a transition |⇥iN ! |⇥0iN 0

between two many-electron states with di↵erent particle numbers
|N �N 0| = 1. The di↵erence EN 0
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⇥ between many-electron

energies of these states is extracted from the peak position.

Constant-interaction model:

- interaction is given by EC(N̂ �N0)2

- possible |⇥iN and |⇥0iN 0 di↵er by the
occupation of one single-particle
orbital k
- �E = EN 0
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- �E(B) = �E(0)± 1
2gkµBB + 1
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Tunneling onto an even ground state |0iNe:
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General definition of g-factor g and level curvature :
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1

2
gµBB +

1

2
B2 +O(B3)

g and  reduce to single-particle quantities in the noninteracting case

Exchange interaction: D. Gorokhov, P.Brouwer (2003)
- suppressed when spin-orbit scattering is strong
- only pairing correlations survive

Eigenstates of the pairing model
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The di↵erence �E⌦,0 splits in a magnetic field because of the singly
occupied orbital in the odd state. However, in general, the
magnetic-field dependence of this di↵erence comes from the
magnetic-field dependence of both ENe
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Linear corrections to energies ENe
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Even ground state:
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symmetry)

Odd state:
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(because of time-reversal symmetry and the blocking e↵ect)

The measured g-factor reduces to the single-particle g-factor of the
odd-state blocked orbital
) the measured distribution of g-factors is not a↵ected by pairing
correlations
) can be used to probe importance of correlations beyond the
pairing interaction

Level curvatures

Quadratic corrections to energies ENe
0 and ENe+1
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Consider tunneling between two ground states
[the first peak in dI/dV (V ) characteristics]
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Pairing interaction with �/� > 1:
The denominators in the odd and even contributions in Eq. (1) are
a↵ected di↵erently.

Negative (odd) contribution
- no excitation gap
- |ENe+1
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⌦0 | can be small

- enhanced

Positive (even) contribution
- excitation gap
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- suppressed

Therefore, pairing correlations are expected to make the distribution
asymmetric and shift it to negative values.

Numerical simulations

I Single-particle eigenenergies and eigenstates follow Gaussian
symplectic ensemble of RMT

IOrbital contribution to magnetization is neglected: M̂z = 2µBŜz

I Exact calculations for small model spaces (up to 13 single-particle
orbitals) because of the significant computational e↵ort

I Calculations based on the generalized variational BCS approach for
larger model spaces (up to 200 single-particle orbitals)
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Conclusions

I g-factors are independent of the strength of the pairing interaction
I Level curvatures are highly sensitive to pairing correlations even in
the fluctuation-dominated regime (�/� . 1)

I Level curvatures can be used as a practical tool to detect pairing
correlations in a spectroscopy experiment
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Results for the level curvature distributions

• Single-particle levels follow the Gaussian symplectic ensemble (GSE).
• Only spin contribution to magnetization is included.
• Exact simulations versus a generalized BCS approach.

Similar qualitative behavior is observed
in the the exact results and in the BCS
approximation

Many-particle level curvature 
distribution is highly sensitive
to pairing correlations (even in
the fluctuation-dominated
regime)  

A tool to probe pairing correlations in the single-electron tunneling 
spectroscopy experiments.
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• A superconducting nano-scale metallic grain is characterize by two regimes:       
BCS regime                and fluctuation-dominated regime               

I. In the absence of spin-orbit scattering:

• Competition between pairing and spin exchange correlations

• Coexistence of superconductivity and ferromagnetism in the fluctuation-
dominated regime

• Effects of exchange correlations on the odd-even signatures of pairing 
correlations are qualitatively different in the BCS and fluctuation-dominated 
regimes 

Δ / δ ≤ 1

Conclusion

Δ / δ >> 1

II. In the presence of spin-orbit scattering:

• Spin exchange correlations are suppressed

• g-factor statistics are unaffected by pairing correlations

• Level curvature statistics is highly sensitive to pairing correlations


