Mesoscopic superconductivity in nano-scale metallic grains

Yoram Alhassid (Yale University)

« Nano-scale superconducting metallic grains (nanoparticles):
BCS (bulk) regime and fluctuation-dominated regime.

Can we observe pairing correlations in the fluctuation-dominated regime?

|. Nanoparticles without spin-orbit scattering
Competition between pairing (superconductivity) and spin exchange
correlations (ferromagnetism).

« How do spin exchange correlations affect the thermodynamic
signatures of pairing correlations ?

[I. Nanoparticles with spin-orbit scattering
Magnetic response of many-particle levels: g-factor and level curvature.

« How do pairing correlations affect the g-factor and level curvature
statistics ?

 (Conclusion



Introduction: nano-scale metallic grains (nanoparticles)

« Discrete energy levels extracted from non-linear

conductance measurements (Ralph et al). G
« Experiments on Al, Co, Au, Cu and Ag grains. e
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* Recent high-quality data in Au grains. rrekal RarCSAricls
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Superconducting grains

Consider materials that are superconductors in the bulk and
characterized by a pairing gap A.

O = single-particle level spacing.
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Many-particle spectrum for an
even number of electrons:

~ 2A




(i) Large grains (~10nm) A>§
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« The Bardeen-Cooper-Schrieffer (BCS) theory is valid (BCS regime)

(i) Small grains (~1nm) A<oO

« BCS theory breaks down.
Anderson: “superconductivity would no longer be possible.”

A mesoscopic regime dominated by large fluctuations of the pairing gap
(fluctuation-dominated regime).

Can we observe signatures of pairing correlations in this regime despite
the large fluctuations ?

For a review, see J. von Delft and D.C. Ralph, Phys. Rep 345, 61 (2001).



I. Superconducting nanoparticles without spin-orbit scattering

An isolated chaotic grain with a large number of electrons is described by
the universal Hamiltonian [Kurland, Aleiner, Altshuler, PRB 62, 14886 (2000) ]
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* Discrete single-particle levels El_ (spin degenerate) and wave functions follow
random matrix theory (RMT).

» Attractive BCS-like pairing interaction ( p7 = ZaTTal is the pair
operator) with coupling G >0. —

* Ferromagnetic exchange interaction ( § is the total spin of the grain)
with exchange constant J_ > 0.

* Corrections ~0O(1/g) are small for large Thouless conductance g.

Competition between pairing and exchange correlations: pairing favors
minimal ground-state spin, while exchange favors maximal spin polarization.



Thermodynamic signatures of the competition between
pairing and exchange correlations

K.N. Nesterov and Y.A., PRB 87, 014515 (2013)

Method of solution:

H = Zilei(a:TaiT +a;¢al,¢)—GPTP— JS§2 =Hg.— JS§2

(i) Exact spin projection method \ - o
p BJ S(S+1) BH Reduced pairing Hamiltonian
P — § * P Bes
Ire = 2 € Tr.e
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Trace over states with fixed spin S

TreX =2S+D)(Try s X —Trg 3, X)

Trace with fixed spin component SZ (calculated by Fourier transform)

See Y.A., Liu and Nakada, PRL 99, 162504 (2007).



(i) Functional integral representation (Hubbard-Stratonovich) for the reduced
pairing Hamiltonian H , . B
- j dr(|A()} | G+h[ A(7),AX(7)])

e 7" = [ DIA(D),A*(2)]Te ° X
one-body Hamiltonian in pairing field A(7)
Expand A(T)=A,+ zAmeiw’"T

(o, are Matsubara frequencies).

Integrate over A, exactly (static path approximation) and over Am by saddle
point [i.e., random phase approximation (RPA)] around each static A

(iii) Number-parity projection to capture odd-even effects.
_ itN
P =(+ne"")/2

n=1(n=-1) describes a projection on even (odd) number of particles

See also 6. Falci, A. Fubini, and A. Mastellone, Phys. Rev. B 65, 140507 (2002).



Heat capacity

Fluctuation-dominated regime BCS regime —»
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BCS regime: exchange correlations enhance the S-shoulder in the even case.

Fluctuation-dominated regime: exchange correlations suppress the odd-
even signatures of pairing correlations.



Spin susceptibility

Fluctuation-dominated regime BCS regime —>
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« BCS regime: exchange correlations enhance re-entrant effect.

* Fluctuation-dominated regime: exchange correlations enhance
the fluctuations of the susceptibility.



II. Superconducting nanoparticles with spin-orbit scattering

K.N. Nesterov and Y.A., arXiv:1507.01575 (2015)
Spin-orbit coupling breaks spin symmetry but preserves time-reversal
symmetry.
— The exchange interaction is suppressed but the pairing interaction
remains unaffected.

We studied the response of energy levels in the nanoparticle to external
magnetic field: linear (g factor) and quadratic (level curvature k) terms.

Single-particle levels vs. magnetic field B

No spin-orbait scattering Spin-orbit scattering
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Brouwer, Waintal and Halperin (2000); Matveev, Glazman and Larkin (2000)




* Recent advances (use of organic substrates) are providing much better
control over the size and shape the metallic grain.

 Level and g-factor statistics in a gold nanoparticle (non-superconducting)
are in agreement with the symplectic ensemble of RMT (Ralph et al, 2008).
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g factor and level curvature in the presence of interactions

dl/dV curves in tunneling spectroscopy experiments measure the energy
differences AE,, between many-particle states with N+1 and N electrons

Assume one-bottleneck geometry: @ ~
decay into the ground state before 0& &3’
another electron is added. °

Ri > R,

For tunneling into the even ground state  AE, = E)" - E"

Many-body levels of the odd nanoparticle are doubly degenerate (Kramers’
degeneracy), and they split in a magnetic field

1 1
AE = AE(0) + 5guBB + EK‘Bz

g and kreduce to the single-particle level quantities in the non-interacting
limit (i.e., constant-interaction model).



Universal Hamiltonian with strong spin-orbit scattering

H = Zeaa —~GP'P-—BM,

/Al To A 107

where a =1,2 is the Kramers doublet with energy €, and P' = Z“allal2
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g-factor (linear correction)

For the even ground state:

ClE+C2E + ..

e e

Crey +C2E+-~> — (0 by time-reversal symmetry
- (M_is odd under time reversal)
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) For the odd state:
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since M, . +M,, ,=0 bytime-reversal symmetry

The many-particle g factor reduces to the single-particle g factor of the
odd-particle blocked orbital.

g-factor distributions are not affected by pairing correlations.



Level curvature k (quadratic correction)

In second-order perturbation theory (even ground state to odd ground state)
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In the Cl model (i.e., non-interacting), k reduces to the single-level curvature
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The single-level curvature distribution
Is symmetric around k=0.
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K in the presence of pairing correlations with A > O

A N 2
I (e S (L DT
o = EéVe+1 —Ege+1 — E(J)Ve_Eé\ie 0 0

Positive contributions to Kk come from the even curvature:
IEéve —ng | >2A - thereis a pairing gap in the even grain
and K is suppressed.

Negative contributions to kK come from the odd curvature:

|E)"' —E)<"' | can be small (no pairing gap in the odd grain)
and K is enhanced

= The curvature distribution is asymmetric and shifted towards negative
values



Results for the level curvature distributions

« Single-particle levels follow the Gaussian symplectic ensemble (GSE).
* Only spin contribution to magnetization is included.
« Exact simulations versus a generalized BCS approach.
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— Atool to probe pairing correlations in the single-electron tunneling

spectroscopy experiments.



Conclusion

A superconducting nano-scale metallic grain is characterize by two regimes:
BCS regime A /6§ >>1 and fluctuation-dominated regime A/0 <1

l. In the absence of spin-orbit scattering:

Competition between pairing and spin exchange correlations

Coexistence of superconductivity and ferromagnetism in the fluctuation-
dominated regime

Effects of exchange correlations on the odd-even signatures of pairing
correlations are qualitatively different in the BCS and fluctuation-dominated
regimes

. In the presence of spin-orbit scattering:

Spin exchange correlations are suppressed
g-factor statistics are unaffected by pairing correlations

Level curvature statistics is highly sensitive to pairing correlations



