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Level densities

Level densities are important input in the Hauser-Feshbach theory of 

compound nuclear reactions, but are not always accessible to direct 

measurement.

• Most approaches are based on empirical modifications of the Fermi gas 

formula or on mean-field approximations that can often miss important

correlations.

The calculation of level densities in the presence of correlations is a

challenging many-body problem.

• The configuration-interaction (CI) shell model accounts for correlations but   

diagonalization methods are limited to spaces of dimensionality  ~ 10
11

.

The auxiliary-field Monte Carlo (AFMC method) enables microscopic 

calculations in spaces that are many orders of magnitude larger (~ 10
30

) 

than those that can be treated by conventional methods.



The auxiliary-field Monte Carlo (AFMC) method
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Gibbs ensemble           at temperature T can be written as a 

superposition of ensembles       of non-interacting nucleons moving in 

time-dependent fields
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• The integrand reduces to matrix algebra in the single-particle space (of  

typical dimension 50 – 100)
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The average level density is found from         in the saddle-point approximation:
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• Calculate the canonical thermal energy versus       and 

integrate                                  to find the canonical partition function           .         

  Z(β )

  E(β ) = 〈H 〉 b

Level density in AFMC 

= canonical heat capacity

= canonical entropyS(E)

C

(β = 1/T )

Start from a configuration-interaction (CI) shell model Hamiltonian 	H

• The high-dimensional       integration is evaluated by Monte Carlo methods.



Mid-mass nuclei

Bonett-Matiz, Mukherjee,
Alhassid, PRC  88, 011302 R (2013)

Excellent agreement 

with experiments:

(i) level counting,

(ii) p evaporation

spectra 

(Ohio U., 2012),

(iii) neutron 

resonance data.

CI shell model model space: complete fpg9/2-shell.

Interaction: includes the dominant components of effective interactions

• pairing, g
0
=-0.212 MeV determined from odd-even mass differences

• multipole-multipole interaction terms -- quadrupole, octupole, and hexadecupole, 

determined from a self-consistent condition and renormalized by k
2
=2, k

3
=1.5, k

4
=1.  

Single-particle Hamiltonian:  from Woods-Saxon potential plus spin-orbit  

Level densities in nickel isotopes



Spin distributions [Alhassid, Liu, Nakada, PRL99, 162504 (2007)] 

= spin cutoff parameter

• Analysis of experimental data [von Egidy and Bucurescu, PRC 78, 051301 R 

(2008)] confirmed our prediction.

• Staggering effect (in spin) for even-even nuclei.

2s

• Use exact spin projection in AFMC
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Heavy nuclei exhibit various types of collectivity (vibrational, rotational, … )

that are well described by empirical models.

However, a microscopic description in a CI shell model has been lacking.

Single-particle Hamiltonian:  from Woods-Saxon potential plus spin-orbit 

Can we describe vibrational and rotational collectivity in heavy nuclei

using a spherical CI shell model approach in a truncated space ?

Heavy nuclei (lanthanides)

CI shell model space:

protons: 50-82 shell plus 1f
7/2

; neutrons: 82-126 shell plus 0h
11/2

and 1g
9/2

Interaction: pairing (g
p
,g

n
) plus multipole-multipole interaction terms –

quadrupole, octupole, and hexadecupole.



The behavior of            versus      is sensitive to the type of collectivity:   〈J
!"2

〉
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is rotational
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Alhassid, Fang, Nakada, PRL 101 (2008) Ozen, Alhassid, Nakada, PRL 110 (2013)

The various types of collectivity are usually identified by their corresponding

spectra, but AFMC does not provide detailed spectroscopy. 



SMMC describes well the crossover from vibrational to rotational

collectivity in good agreement with the experimental data at low T. 

T

   
〈J
!"2

〉=
J (J +1)(2J +1)e−Eα J /T

α J∑
(2J +1)e−Eα J /T

α J∑
• Experimental values are found from 

where         are the experimentally known levels.JEa

versus     in samarium isotopes   〈J
!"2

〉 T

• Add the contribution of higher levels using the experimental level 

density to get an experimental values at higher    .

Crossover from vibrational to rotational collectivity in heavy nuclei



Level densities in samarium and neodymium isotopes

• Good agreement of AFMC densities with various experimental data sets 

(level counting, neutron resonance data when available).
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Level densities in odd samarium and neodymium isotopes

• The projection on odd number of particles introduces a sign problem:

it is difficult to determine an accurate ground-state energy E
0
.

We extracted E
0

by a fit to the experimental thermal energy E
x
(T)

C. Ozen, Y. Alhassid, H. Nakada, PRC 91, 034329 (2015)

• Work in progress to determine E
0

without using experimental data.
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Rotational enhancement in deformed nuclei

A deformed nucleus (         ): Hartree-Fock (HF) vs AFMC
162Dy

Alhassid, Bertsch, Gilbreth and Nakada, PRC 93, 044320 (2016)
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The HF entropy of           goes to zero

faster than the AFMC entropy (since it

does not contain the contribution from

rotational bands).

162Dy

• The enhancement of the AFMC density

(compared with HF) is due to rotational           

bands built on top of the intrinsic bandheads.

• Particle-number projection in HF is carried out in the saddle-point approximation

• The rotational enhancement gets damped 

above the shape transition.



Entropy versus 

• The HF entropy of           goes to zero faster than the SMMC entropy 

(since it does not contain the contribution from rotational bands).

• The HFB entropy of            becomes negative at large        (saddle-point

approximation is not good for particle-number projection). 
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AFMC distributions agree well with an empirical staggered spin cutoff     

formula based on low-energy counting data 

• Good agreement with spin-cutoff (s.-c.) model

at higher excitations.

• Odd-even staggering in spin at low excitation energies.
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Three methods to determine

• Moment of inertia I is suppressed by pairing correlations below E
x

~ 5 MeV

  
Σ Jρ J (Ex )= ρM=0(Ex ) = 1

2πσ
ρ(Ex )

calculated from 

 σ
2 =< Jz

2 >=<
!
J 2 > /3

I
σ 2

(ii) Fit to spin cutoff model

(ii) From

(iii) From ratio of level to 

state density
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• Parity ratio is equilibrated at the

neutron separation energy



Nuclear deformation in a spherical shell model approach

• Deformation is a key concept in understanding heavy nuclei but it is based

on a mean-field approximation that breaks rotational invariance. 

Modeling of fission requires level density as a function of deformation.

The challenge is to study nuclear deformation in a framework that

preserves rotational invariance.

We calculated the distribution of the axial mass quadrupole in the lab frame 

using an exact projection on           (novel in that                      ).[Q20,H ]≠ 0Q20

Alhassid, Gilbreth, Bertsch, PRL 113, 262503 (2014)

Pβ (q) = 〈δ (Q20 − q)〉 =
1

Tr e−βH
dϕ
2π e

− iϕ qTr
−∞

∞

∫ (eiϕQ20e−βH )



Application to heavy nuclei

(deformed)  

• At low temperatures, the distribution is similar to that of a prolate rigid rotor 

a model-independent signature of deformation.

154Sm

(spherical)  

148Sm

• The distribution is close to a Gaussian even at low temperatures.

Rigid rotor

AFMC
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at a given temperature T is an invariant and can be expanded in

the quadrupole invariants  

• The expansion coefficients A,B,C… can be determined from the 

expectation values of the invariants, which in turn can be calculated 

from the low-order moments of  q20 = q

• Mimics a shape transition from a deformed to a spherical shape

without using a mean-field approximation !

Intrinsic shape distributions

Information on intrinsic deformation        can be obtained from the expectation 

values of rotationally invariant combinations of the quadrupole tensor        .   q2µ
β,γ

PT (β,γ )

− lnPT =Aβ
2 − Bβ 3 cos3γ +Cβ 4 + ...

lnPT (β,γ )

Alhassid, Mustonen, Gilbreth, Bertsch
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We divide the          plane into three regions:

spherical, prolate and oblate.

Integrate over each deformation region to determine the probability of 

shapes versus temperature
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Level density versus intrinsic deformation 
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Conclusion
• AFMC is a powerful method for the microscopic calculation of level densities  

in very large model spaces; applications in nuclei as heavy as the lanthanides.

• Microscopic description of rotational enhancement in deformed nuclei.

• Spin distributions: odd-even staggering in even-even nuclei at low excitation 

energies; spin cutoff model at higher excitations.

• Level density as a function of deformation in a rotationally invariant 

framework (CI shell model). 

• Other mass regions (actinides, unstable nuclei,…).

• Gamma strength functions in AFMC by inversion of imaginary-time response 

functions. 

• Derive global effective shell model interactions from density functional theory.

Outlook


