Publications
Yoram Alhassid

1. *Entropy and Chemical Change. III. The Maximal Entropy (subject to constraints) Procedure as a Dynamical Theory*

2. *Connection Between the Maximal Entropy and The Scattering Theoretic Analysis of Collision Processes*

3. *Heavy-Ion Transfer Reactions to the Continuum: Surprisal Analysis and the Condition of Maximal Entropy*

4. *An Upper Bound for the Entropy and its Applications to the Maximal Entropy Problem*

5. *An Algorithm for Finding the Distribution of Maximal Entropy*

6. *An Algorithm for Determining the Lagrange Parameters in the Maximum Entropy Formalism*

7. *Collision Experiments with Partial Resolution of Final States: Maximum Entropy Procedure and Surprisal Analysis*

8. *Information-Theoretic Analysis of Energy Disposal in Heavy-Ion Transfer Reactions*

9. *Heavy-Ion Transfer Reactions to Highly Excited States: A Constrained Phase-Space Analysis of Energy Spectra*
10. *Time Dependent Mean-Field Approximation to the Many-Body S-Matrix*
 Y. Alhassid and S.E. Koonin, Proceeding of the Workshop on Nuclear Dynamics,
 Granlibakken, Tahoe City, California; LBL Report 10688 (1980).

11. *A Constrained Phase-Space Approach to Analysis of Nuclear Reactions Data*
 Y. Alhassid, Invited talk in the American Physical Society Meeting, Washington,
 D.C., Caltech Preprint MAP 13 (1980).

12. *A Reduced Phase-Space Approach to Collision Processes*

13. *Experimental and Inherent Uncertainties in the Information Theoretic Approach*

14. *Mean Field Approximations to the Many-Body S-Matrix*
 S.E. Koonin, Y. Alhassid and K.R. Sandhya Devi, Proceedings of the 2nd Interna-
 tional Conference on Recent Progress in Many-Body Theories, Oaxtepec (1981).

15. *Mean Field Approximations for Inclusive Observables*

16. *Mean Field Approximation to the Many-Body S-Matrix*

17. *Distortions in the Cosmic Background Radiation and Big-Bang 4He Nucleosynthesis*

18. *Radiative Width of Molecular-Cluster States*

19. *Potential Scattering, Transfer Matrix and Group Theory*

20. *Group Theory Approach to Scattering and Band Structure Problems*

21. *Group Theory Approach to Scattering*

22. *Group Theory of the Morse Potential*
23. A Unified Variational Principle for the Information Theoretic Analysis of Data and its Scatter

24. Level Density Calculations of Heavy Nuclei at High Excitation Energies

25. Phenomenology of Shape Transitions in Hot Nuclei

26. Monte Carlo Method for the Many-Body Scattering Problem

27. Extended Time-Dependent Mean-Field Theories from the Maximum Entropy Principle

28. Approximation Methods for the Nuclear Thermodynamic Functions and Their Validity in a Solvable Model

29. Group Theory Methods for Scattering Problems

30. Algebraic Calculation of the Morse Oscillator Scattering Matrix

31. An Algebraic Approach to the Morse Potential Scattering

32. An Algebraic Approach to Scattering and Band Structure Problems

33. An Algebraic Approach to the S-Matrix

34. A geometric approach to dissipation and its applications to dissipative nuclear dynamics
35. Path-Integral Monte-Carlo Calculations of 4He and 6Li

36. Formal Scattering Theory by an Algebraic Approach

37. Evidence for Phase Space Transitions in Excited Triatomic Molecules

38. Algebraic Approach to Scattering

39. Resonance Widths and Positions by Algebraic Approach

40. Dissipation in many body systems: A Geometrical Approach Based on Information Theory

41. Group Theory Approach to Scattering II. The Euclidean Connection

42. Dynamic Symmetries in Scattering

43. Group Theory Approach to Scattering III. Realistic Models

44. Contractions and Expansions of Lie Groups and the Algebraic Approach to Scattering

45. Universal Features of Shape Transitions in Hot Rotating Nuclei

46. Transition Strength Fluctuations and the Onset of Chaotic Motion

47. An Algebraic Approach to Dissociation
48. Transition Strength Fluctuations and the Onset of Chaos

49. Landau Theory of Shape Transitions in Hot Rotating Nuclei

50. The Euclidean Connection and the Algebraic Theory of Scattering

51. Group Theory Approach to Scattering and its Application to Heavy-ion Collisions

52. Group Deformations and the Algebraic Scheme for Scattering

53. An Algebraic Approach to Dissociation

54. Dynamical Symmetries of the Perturbed Hydrogen Atoms: A New View of the van der Waals Interaction

55. New Deformation Effects in Nuclei

56. Shape Transitions and Giant Dipole Resonances in Hot Rotating Nuclei

57. Landau Theory of Shapes, Shape Fluctuations and Giant Dipole Resonances

58. Shape Changes and Giant Dipole Resonances in Hot Rotating Nuclei

59. Statistical Fluctuations of Matrix Elements in Regular and Chaotic Systems
60. **Thermal Shape Fluctuations, Landau Theory and Giant Dipole Resonances in Hot Rotating Nuclei**

61. **A Study of Heavy Ion Reactions in the Algebraic Scattering Theory**

62. **Simple Systematics of the Shape Transitions in Hot Rare-Earth Nuclei**

63. **Group Theory Approach to Relativistic Scattering**

64. **Nearest Neighbor Level Spacing Distributions: on the Transition from the Regular to the Chaotic Regimes**

65. **A Stochastic Approach to Giant Dipole Resonances in Hot Rotating Nuclei**

66. **Algebraic Approach to Heavy Ion Reactions**

67. **Group Theory Approach to Scattering: IV. Solvable Potentials**

68. **Nuclear Structure: Hot Nuclei and Rapidly Rotating Superdeformed Nuclei**

69. **Effects of Thermal Fluctuations on Giant Dipole Resonances in Hot Rotating Nuclei**

70. **Time-Dependent Fluctuations and the Giant Dipole Resonance in Hot Nuclei: Realistic Calculations**

71. **The Potential Group Approach and Hypergeometric Differential Equations**

72. **Orientation Fluctuations and the Angular Distribution of the Giant Dipole Resonance γ-Rays in Hot Rotating Nuclei,**
73. *Quantum Chaos in the Low-Lying Collective States of Even-Even Nuclei*

74. *Landau Theory and Shape Fluctuations in Hot Rotating Nuclei*

75. *Time-Dependent Fluctuations and the Giant Dipole Resonance in Hot Nuclei: Solvable Models*

76. *On the Width of the Giant Dipole Resonance in Deformed Nuclei*

77. *Effects of Orientation Fluctuations on the Angular Distribution of the Giant Dipole Resonance γ-Rays in Hot Rotating Nuclei*

78. *Chaos in the Low-Lying Collective States of Even-Even Nuclei*

79. *Hot Nuclei - Landau Theory, Thermal Fluctuations and Dissipation*

80. *Chaos in the Low-Lying Collective States of Nuclei*

81. *Chaotic Properties of the Interacting Boson Model: A Discovery of a New Regular Region*

82. *Statistical Nuclear Behavior: Finite-Temperature and Chaotic Phenomena*

83. *Chaos in the Low-Lying Collective States of Nuclei*
84. Lower Bound on the Critical Energy for the Onset of Chaos and the Chaotic Dynamical Aperture of Large Accelerators

85. Chaos in the Low-Lying Collective States of Nuclei: Quantal Fluctuations

86. Quantal and Thermal Zero Point Formulae of Barrier Transmission Probability

87. Classical and Quantal Chaos in the Collective Dynamics of Nuclei

88. A Lower Bound on the Critical Energy for the Onset of Chaos and the Chaotic Dynamical Aperture of Large Accelerators

89. Statistical Theory of Coulomb Blockade Oscillations: Quantum Chaos in Quantum Dots

90. Algebraic-Eikonal Approach to Electron-Molecule Scattering: I. Generalized Formalism

91. Algebraic-Eikonal Approach to Electron-Molecule Scattering: II. Ro-vibrational Excitations

92. The Spectral Autocorrelation Function in the Statistical Theory of Energy Levels

93. Algebraic Rotating Frame Approach to Electron-Molecule Scattering: Hybrid Calculation

94. The Giant Dipole Resonance in Hot Rotating Nuclei

95. Statistical Theory of Coulomb Blockade and Resonant Tunneling Oscillations in Quantum Dots
A.D. Stone, R.A. Jalabert and Y. Alhassid, in Transport Phenomena in Mesoscopic

96. *Chaos in Nuclei with Broken Pairs*

97. *Partial Dynamical Symmetry*

98. *The Systematics of the Landau Expansion in Hot Nuclei*

99. *Nuclear Level Densities in the Static Path Approximation: I. A. Solvable Model*

100. *Chaotic Properties of the Interacting Boson Model*

101. *Partial Dynamical Symmetry*

102. *Hot Rotating Nuclei*

103. *Two-Time Influence Functional Method to Multi-Dimensional Quantum Tunneling*

104. *Evidence for a Phase Transition in the Nuclear Shape at Finite Temperature and Rapid Rotation*

105. *The Onset of Chaos and its Signature in the Spectral Autocorrelation Function*

106. *Algebraic Rotating Frame Approach to Electron-Molecule Scattering*

107. *Nuclear Level Densities in the Static Path Approximation: II. Spin Dependence*
108. *GDR Dissipation and Shape Evolution in Hot Fast-Rotating Dy Nuclei*

109. *Partial Dynamical Symmetry and the Suppression of Chaos*

110. *The Jacobi Transition and the Giant Dipole Resonance in Rapidly Rotating Hot Nuclei*

111. *Algebraic Methods in Scattering*

112. *Dynamical Symmetry Breaking and the Onset of Chaos in the Interacting Boson Model of Nuclei*

113. *Non-Generic Nuclear Spectral Fluctuations*

114. *Practical Solution to the Monte Carlo Sign Problem: Realistic Calculations of 54Fe*

115. *The Giant Dipole Resonance in Hot Rotating Nuclei*

116. *Complete $0\hbar\omega$ Calculations of Gamow-Teller Strengths for Nuclei in the Iron Region*

117. *Deformed Gaussian Orthogonal Ensemble Analysis of the Interacting Boson Model*

118. *Algebraic Rotating Frame Approach to Nuclear Reactions*
119. *Chaos in the Collective Dynamics of Nuclei*

120. *GDR γ-ray decay in 156Dy* from Regions Selected on Temperature and Angular Momentum

121. *Thermal Properties of 54Fe*

122. *Universal Parametric Correlations of Eigenfunctions in Chaotic and Disordered Systems*

123. *Spin-Dependent Shape Changes in Light-Medium Mass Compound Nuclei*

124. *Shell-model Studies of fp-shell Nuclei*

125. *The Statistical Distributions of Level Widths and Conductance Peaks in Irregularly Shaped Quantum Dots*

126. *Gaussian Random Matrix Process and Universal Parametric Correlations in Complex Systems*

127. *Universal Parametric Correlations of Conductance Peaks in Quantum Dots*

128. *Gaussian Processes and Universal Parametric Decorrelations of Wavefunctions*

129. *The Giant Dipole Resonance in Hot Rotating Nuclei*
130. *Universal Correlations of Coulomb Blockade Conductance Peaks and the Rotation Scaling in Quantum Dots*

131. *Shell Model Monte Carlo Studies of γ-Soft Nuclei*

132. *Signatures of Chaos in the Statistical Distribution of Conductance Peaks in Quantum Dots*

133. *The Perturbed Static Path Approximation: Observables and Strength Functions*

134. *Total and parity-Projected Level Densities Iron-Region Nuclei in the Auxiliary Fields Monte Carlo Shell Model*

135. *Mean-Field and Beyond: Quantum Monte Carlo Methods for Finite Fermi Systems*

136. *Shell Model Monte Carlo Methods and their Application to Nuclear Level Densities*

137. *Scaling Properties of the Giant Dipole Resonance Width in Hot Rotating nuclei*

138. *Total and Parity-Projected Level Densities of Iron-Region Nuclei by the Shell Model Monte Carlo Method*

139. *Coulomb blockade conductance peak distributions in quantum dots and the crossover between orthogonal and unitary symmetry*

140. *Photodissociation in Quantum Chaotic Systems: Random Matrix Theory of Cross-Section Autocorrelations*
141. *Conductance Peak Distributions in Quantum Dots at Finite Temperature: Signatures of the Charging Energy*

142. *Microscopic Nuclear Level Densities from Fe to Ge by the Shell Model Monte Carlo Method*

143. *Weak Localization in the Conductance Peaks of Coulomb Blockade Quantum Dots*

144. *The Spectral Autocorrelation Function and Survival Probability in Weakly Open Chaotic Systems*

145. *Changing the Electronic Spectrum of a Quantum Dot by Adding Electrons*

146. *Giant Dipole Resonances in Hot Rotating Nuclei: Overview and Recent Advances*

147. *Exclusive Studies of the Giant Dipole Resonance in Excited Nuclei*

148. *Systematics of the Nuclear Giant Dipole Resonance*

149. *Scaling Properties and the Behavior of the Nuclear Giant Dipole Resonance Under Extreme Conditions*

150. *Monte Carlo Methods for the Nuclear Shell Model: Recent Applications*

151. *Particle-number Reprojection in the Shell Model Monte Carlo Method: Application to Nuclear Level Densities*
152. *Finite Temperature Effects in Coulomb Blockade Quantum Dots and Signatures of Spectral Scrambling*

153. *Random Matrix Model for Quantum Dots with Interactions: Universality of the Conductance Peak Spacing Distribution*

154. *Level Densities by Particle Reprojection Monte Carlo Methods*

155. *Parity Dependence of Level Densities*

156. *The Statistical Theory of Quantum Dots*

157. *Dynamics of Complex Systems*

158. *Fluctuations of Interactions and Coulomb Blockade Peak Spacings Distribution*

159. *Shell Model Monte Carlo Approach to Nuclear Level Densities*

160. *Giant Dipole Resonances in Hot, Rotating Nuclei: Nuclear Shapes and Shell Corrections*

161. *Chaos and Interactions in Quantum Dots*

162. *Quantum Monte Carlo Methods for the Nuclear Shell Model at Finite Temperature*

163. *Quantum Monte Carlo Methods for Nuclei at Finite Temperature*
164. Signature of a Pairing Transition in the Heat Capacity of Finite Nuclei

165. Spectral Scrambling in Coulomb-blockade Quantum Dots

166. Random Interaction Matrix Model and the Conductance Peak Height Statistics in Quantum Dots

167. Signatures of Inelastic Scattering in Coulomb-blockade Quantum Dots

168. Chaos and Interactions: from Nuclei to Quantum Dots

169. Quantum Monte Carlo Methods for the Nuclear Many-Body Problem at Finite Temperature

170. Statistical Fluctuations of Electromagnetic Transition Intensities and Moments in fp-Shell Nuclei

172. Microscopic Nuclear Level Densities by the Shell Model Monte Carlo Method

173. The Importance of Parity-Dependence of the Nuclear Level Density in the Prediction of Astrophysical Reaction Rates
174. *Level Densities of $N \sim Z$ Nuclei using exact isospin Projection in the Shell Model Monte Carlo Method*

175. *Influence of Parity-dependence in the Nuclear Level Density on the Prediction of Astrophysical Reaction Rates*

176. *Microscopic Nuclear Level Densities by the Shell Model Monte Carlo Method*

177. *Effects of Spin and Exchange Interaction on the Coulomb-blockade Peak Statistics in Quantum Dots*

178. *Nuclear Level Statistics: Extending the Shell Model Theory to Higher Temperatures*

179. *A Universal Hamiltonian for a Quantum Dot in the Presence of Spin-orbit Interaction*
Y. Alhassid and T. Rupp, cond-mat/0312691.

180. *Thermal Signatures of Phase Transitions in Finite Nuclei*

181. *Highly Selective Studies of Giant Dipole Resonance in 164Er*

182. *Linear Conductance in Coulomb-blockade Quantum Dots in the Presence of Interactions and Spin*
183. *Disordered Systems with Interactions: Induced Two–body Ensembles and the Hartree–Fock Approach*

184. *Statistical Properties of Nuclei by the Shell Model Monte Carlo Method*

185. *Mesoscopic Fluctuations in Quantum Dots, Nanoparticles and Nuclei*

186. *The Nuclear Moment of Inertia and Spin Distribution of Nuclear Levels*

187. *Mesoscopic Fluctuations in Quantum Dots, Nanoparticles and Nuclei*

188. *Statistical Properties of Nuclei by the Shell Model Monte Carlo Method*

189. *Fano Interference and Cross-section Fluctuations in Molecular Photodissociation*

190. *Effective Quadrupole-Quadrupole Interaction from Density Functional Theory*

191. *Spin-orbit Interaction in Quantum Dots in the Presence of Exchange Correlations*

192. *Large-scale Prediction of the Parity Distribution in the Nuclear Level Density and Application to Astrophysical Reaction Rates*

193. Thermal Signatures of Pairing Correlations in Nuclei and Nanoparticles

194. Spin Projection in the Shell Model Monte Carlo Method and the Spin Distribution of Nuclear Level Densities

195. Extracting the Ground-state Spin of a Quantum Dot from the Conductance Peaks in a Parallel Magnetic Field at Finite Temperature

196. Scrambling of Hartree-Fock Levels as a universal Brownian-Motion Process

197. Thermodynamics of Ultra-Small Metallic Grains in the Auxiliary-Field Monte Carlo Approach
Y. Alhassid, L. Fang, and S. Schmidt, cond-mat/0702304.

198. Effect of a Zeeman Field on the Superconductor-Ferromagnet Transition in Metallic Grains

199. Interaction Matrix Element Fluctuations in Quantum Dots

200. Interacting Quantum Dot Coupled to a Kondo Spin: a Universal Hamiltonian Study

201. The Shell Model Monte Carlo Approach to Level Densities: from Medium-Mass to Heavy Deformed Nuclei

202. A New Effective Interaction for the Trapped Fermi Gas
203. *Effective Shell Model Hamiltonians from Density Functional Theory: Quadrupolar and Pairing Correlations*

204. *Interaction Matrix Element Fluctuations in Ballistic Quantum Dots: Random Wave Model*

205. *Heavy Deformed Nuclei in the Shell Model Monte Carlo Method*

206. *Mesoscopic Competition of Superconductivity and Ferromagnetism: Conductance Peak Statistics in Metallic Grains*

207. *Isospin-Projected Nuclear Level Densities in the Shell Model Monte Carlo Method*

208. *Microscopic calculation of symmetry projected nuclear level densities*

209. *The strong coupling limit of a Kondo spin coupled to a mesoscopic quantum dot: effective Hamiltonian in the presence of exchange interaction*

210. *Mesoscopic Interplay of Superconductivity and Ferromagnetism in Ultra-small Metallic Grains*

211. *Signatures of Exchange Interaction in the Thermopower of Quantum Dots*

212. *From Femtoscience to Nanoscience: Nuclei, Quantum Dots, and Nanostructures*
Y. Alhassid, B.L. Altshuler and V.I. Fal’ko, Institute of Nuclear Theory (INT) news article, March 2010; see http://www.int.washington.edu/alhassid.html.

213. *A number-conserving theory of the pairing interaction: a global assessment*
Dynamical effects and fluctuations of interaction matrix elements for a ballistic quantum dot

Shell model Monte Carlo approach: the heavy nuclei

Thermodynamic properties of metallic grains: the competition between pairing and spin exchange correlations

A new effective interaction for the two-component trapped Fermi gas: the BEC to BCS crossover

Odd-particle systems in the shell model Monte Carlo: circumventing a sign problem

Nuclear level density of 161Dy in the shell model Monte Carlo method

The coexistence of superconductivity and ferromagnetism in nano-scale metallic grains

Signatures of phase transitions in nuclei at finite excitation energies

Recent developments in the shell model Monte Carlo approach to nuclei

Crossover from vibrational to rotational collectivity in heavy nuclei in the shell-model Monte Carlo approach
224. Thermal Signatures of Pairing Correlations in Nuclei and Nano-Scale Metallic Grains

225. Thermodynamics of ultrasmall metallic grains in the presence of pairing and exchange correlations: mesoscopic fluctuations

226. Level densities of nickel isotopes: Microscopic theory versus experiment

227. Configuration-interaction Monte Carlo method and its application to the trapped unitary Fermi gas

228. Pair condensation in a finite trapped Fermi gas

229. Calculating level densities of heavy nuclei by the shell Model Monte Carlo method

230. Recent Advances in the Microscopic Calculations of Level Densities by the Shell Model Monte Carlo Method

231. Collectivity in heavy nuclei in the shell model Monte Carlo approach

232. Nuclear state densities of odd-mass heavy nuclei in the shell model Monte Carlo approach

233. Mesoscopic superconductivity in ultra-small metallic grains
234. *Nuclear Deformation at Finite Temperature*

235. *Stabilizing the canonical-ensemble calculations in the auxiliary-field Monte Carlo method*

236. *Collective enhancement of nuclear state densities by the shell model Monte Carlo approach*

237. *Nuclear state densities of odd-mass heavy nuclei in the shell model Monte Carlo approach*

238. *Recent Advances in the Application of the Shell Model Monte Carlo Approach to Nuclei*

239. *Direct microscopic calculations of nuclear level densities in the shell model Monte Carlo approach*

240. *The shell model Monte Carlo approach to level densities: recent developments and perspectives*

241. *Magnetic response of energy levels of superconducting nanoparticles with spin-orbit scattering*

242. *Microscopic nuclear level densities by the shell model Monte Carlo method*
243. *Benchmarking mean-field approximations to level densities*

244. *Level densities of heavy nuclei in the shell model Monte Carlo approach*

245. *Auxiliary-field quantum Monte Carlo methods in nuclei*

246. *Spin-orbit scattering in superconducting nanoparticles*

247. *Particle-number projection in the finite-temperature mean-field approximation*

248. *Nuclear deformation in the laboratory frame*

249. *Neutron width statistics in a realistic resonance-reaction model*

250. *Nuclear deformation by the shell model Monte Carlo method*

251. *Nature of pairing correlations in the homogeneous Fermi gas at unitarity*

252. *The β, γ distribution of nuclear state densities*